Industry 4.0

Non-Contact Infrared Temperature Sensors with IO-Link – Enabler for Industry 4.0

Guest contributor: Manfred Munzl for Balluff

Automation in Steel-Plants

Modern production requires a very high level of automation. One big benefit of fully automated plants and processes is the reduction of faults and mishaps that may lead to highly expensive downtime. In large steel plants there are hundreds of red hot steel slabs moving around, being processed, milled and manufactured into various products such as wires, coils and bars. Keeping track of these objects is of utmost importance to ensure a smooth and cost efficient production. A blockage or damage of a production line usually leads to an unexpected downtime and it takes hours to be rectified and restart the process.

To meet the challenges of the manufacturing processes in modern steel plants you need to control and monitor automatically material flows. This applies especially the path of the workpieces through the plant (as components of the product to be manufactured) and will be placed also at locations with limited access or hazardous areas within the factory.

Detection of Hot Metal

Standard sensors such as inductive or photoelectric devices cannot be used near red hot objects as they either would be damaged by the heat or would be overloaded with the tremendous infrared radiation emitted by the object. However, there is a sensing principle that uses this infrared radiation to detect the hot object and even gives a clue about its temperature.

Non-contact infrared thermometers meet the requirements and are successfully used in this kind of application. They can be mounted away from the hot object so they are not destroyed by the heat, yet they capture the Infrared emitted as this radiation travels virtually unlimited. Moreover, the wavelength and intensity of the radiation can be evaluated to allow for a pretty accurate temperature reading of the object. Still there are certain parameters to be set or taught to make the device work correctly. As many of these infrared thermometers are placed in hazardous or inaccessible places, a parametrization or adjustment directly at the device is often difficult or even impossible. Therefore, an intelligent interface is required both to monitor and read out data generated by the sensor and – even more important – to download parameters and other data to the sensor.

Technical basics of Infrared Hot-Metal-Detectors

Traditional photoelectric sensors generate a signal and receive in most cases a reflection of this signal. Contrary to this, an infrared sensor does not emit any signal. The physical basics of an infrared sensor is to detect infrared radiation which is emitted by any object.
Each body, with a temperature above absolute zero (-273.15°C or −459.67 °F) emits an
electromagnetic radiation from its surface, which is proportional to its intrinsic
temperature. This radiation is called temperature or heat radiation.

By use of different technologies, such as photodiodes or thermopiles, this radiation can be detected and measured over a long distance.

Key Advantages of Infrared Thermometry

This non-contact, optical-based measuring method offers various advantages over thermometers with direct contact:

  • Reactionless measurement, i.e. the measured object remains unaffected, making it possible to measure the temperature of very small parts
  • Very fast measuring frequence
  • Measurement over long distances is possible, measuring device can be located outside the hazardous area
  • Very hot temperatures can be measured
  • Object detection of very hot parts: pyrometers can be used for object detection of very hot parts where conventional optical sensors are limited by the high infrared radiation
  • Measurement of moving objects is possible
  • No wear at the measuring point
  • Non-hazardous measurement of electrically live parts

IO-Link for smarter sensors

IO-Link as sensor interface has been established for nearly all sensor types in the past 10 years. It is a standardized uniform interface for sensors and actuators irrespective of their complexity. They provide consistent communication between devices and the control system/HMI.  It also allows for a dynamic change of sensor parameters by the controller or the operator on the HMI thus reducing downtimes for product changeovers. If a device needs to be replaced there is automatic parameter reassignment as soon as the new device has been installed and connected. This too reduces manual intervention and prevents incorrect settings. No special device-proprietary software is needed and wiring is easy, using three wire standard cables without any need for shielding.

Therefore, IO-Link is the ideal interface for a non-contact temperature sensor.

All values and data generated within the temperature sensor can be uploaded to the control system and can be used for condition monitoring and preventive maintenance purposes. As steel plants need to know in-process data to maintain a constant high quality of their products, sensors that provide more data than just a binary signal will generate extra benefit for a reliable, smooth production in the Industry 4.0 realm.

To learn more about this technology visit www.balluff.com.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Tool Identification in Metalworking

Guest contributor: Martin Kurzblog, Fan of Industrial Automation

With the start of industry 3.0 (the computer based automation of production) the users of machine tools began to avoid routine work like manually entering tool data into the HMI.  Computerized Numerical Controlled CNC machine tools gained more and more market share in metalworking applications.  These machines are quite often equipped with automatic tool change systems. For a correct production the real tool dimensions need to be entered into the CNC to define the tool path.

Tool ID for Automatic and Reliable Data Handling

Rather than entering the real tool diameter and tool length manually into the CNC, this data may be measured by a tool pre-setter and then stored in the RFID tool chip via an integrated RFID read-/write system. Typically when the tool is entered in the tool magazine the tool data are read by another read-/ write system which is integrated in the machine tool.

Globally in most cases the RFID tool chips are mounted in the tool holder (radially mounted eg. in SK or HSK holders).

In some applications the RFID tool chips are mounted in the pull stud (which holds the tool in the tool holder). Especially in Japan this tag position is used.

Tool Data for Different Levels of the Automation Pyramid

The tool data like tool diameters and tool lengths are relevant for the control level to guarantee a precise production of the workpieces.  Other data like planned and real tool usage times are relevant for industrial engineering and quality control to e.g. secure a defined surface finish of the workpieces.  Industrial engineers perform milling and optimization tests (with different rotational spindle speeds and tool feed rates) in order to find the perfect tool usage time as a balance between efficiency and quality.  These engineering activities typically are on the supervision level.  The procurement of new tools (when the existing tools are worn out after e.g.  5 to 10 grinding cycles) is conducted via the ERP System as a part of the asset management.

Coming back to the beginning of the 3rd industrial revolution the concept of CIM (Computer Integrated Manufacturing) was created, driven by the integration of computers and information technology (IT).

With the 4th industrial revolution, Industry 4.0, the success story of the Internet now adds cyber physical systems to industrial production.  Cloud systems support and speed up the communication between customers and suppliers.  Tool Management covers two areas of the Automation pyramid.

  1. Machine Control: From sensor / actuator level up to the control level (real time )
  2. Asset Management: Up to enterprise level and beyond (even to the “Cloud”)

To learn more about Tool ID visit www.balluff.com

cropped-cmafh-logo-with-tagline-caps.png CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

How do I see PLC data from my smartphone?

Guest contributor, Pat Millot, Balluff

From my smartphone, I can do anything from making coffee to adjusting my home thermostat. This wave of appliances and other physical devices connecting and communicating through a network is known as the Internet of Things and it’s playing a crucial role in industry. With the Industrial Internet of Things (IIoT) we can now monitor PLC data without ever intruding on the PLC. Let’s take a look at how I implemented PLC tags on a web application.

IIoT_computer The first step is to download OPC UA historian software. OPC UA stands for Open Platform Communications Unified Architecture. OPC is a client/server communication standard that was made as a gateway between the PLC and a Windows PC. The UA was added as an upgrade that allowed communication across other operating systems such as Linux and iOS along with other added functionality improvements. Once this software is running and the PLC and PC are communicating, we can work on hosting that data.

IIoT_StructureHosting the controller data can seem like a daunting task at first due to the many different options in software and programming languages to use. For example: Ruby, PHP, ASP, ASP.NET and much more are available for back-end development. For my web app, I used SQL to host the data from the OPC UA software. As for the back-end, I went with node.js because it has great packages for working with SQL; in addition to the fact that node.js uses JavaScript syntax which I’m familiar with. The front end of the app was written with HTML and CSS with JavaScript for interactivity. With all these elements in place, I was ready to host the server on the PC to host PLC data.

With smart IO-Link sensors on our conveyor I was able to look at diagnostic and functional data in the PLC and setup an interactive screen at the conveyor for viewing production and maintenance information.

And now I can even check my sensor outputs with the same smartphone that just made my coffee and adjusted my office’s temperature.

IIoT_warehouse

You can learn more about the Industrial Internet of Things at www.balluff.us.

Shop Balluff products online at www.cmafh.com

Drive for Technology 2016: New products with real benefits

by Harry Aghjian, CEO CMA/Flodyne/Hydradyne

Since 2004, CMA/Flodyne/Hydradyne has hosted a tradeshow and learning symposium every two years for our customers called the Drive for Technology.  The Drive for Technology has become known in our region for being a compact, powerful trade show where attendees can learn about new products and technology in an intimate setting.

This past April 19-20,  the Drive for Technology closed with our highest attendance to date – over 571 customers primarily from Illinois and Wisconsin – and some of the best attendee reviews we have had!

It is encouraging that our customers came from hundreds of miles away to be at the show.  We worked hard to combine an information rich event with some fun.  Our pig roast and barista bars were examples of the “fun” part.  The key for us, however,  was the information portion of the two day event.

The Drive for Technology used three channels to impart new products, new theories & new technologies to our customers:  technical seminars,  hands-on workshops and a vendor trade show.   Using the Internet of Things or, if you prefer, Industry 4.0 as our theme, we highlighted some of the newest technologies known to our industry.

4A8A2750

One such example is the Rexroth MLC-H controller.  MLC-H is the only open architecture controller that allows the mixing of hydraulic axis and electric servo/stepper axis under one programming environment using a digital SERCOS III interface.  The truly revolutionary part of this new technology is its Open Core interface.   Open what?  One easy example to illustrate Open Core: the MLC-H is open to external devices such as smart phones and tablets.  Having an open interface makes the MLC-H  a truly future proof technology supporting all the Ethernet-based protocols!

Another example is the OXiStop, OXS from Hydac.  Simply put, OXS allows us to shrink hydraulic reservoirs by up to 8x (less oil) and reduce operating costs up to 3x.  These are real benefits from products that are brand new to our industry.

4A8A2634

Our final mission was to allow our customers to “take with” the key information that they were presented with at the show.  We supplied an on-line link from our web site to download 100 +MB of information and data complete with application examples from each technical seminar.

Bosch Rexroth, for example, conducted four technical seminars, two workshops and set-up a 40 ft. booth to display their technology.  That’s a lot of information, and our customers were able to digitally walk away with everything that they needed at the end of the two day show.  That’s what the Drive for Technology is all about!

4A8A2969

4A8A2822

Virtual commissioning saves precious time

Guest contributor:  Steffen Winkler, Vice President Sales Factory Automation, Bosch Rexroth

Ever shorter product life cycles and the desire for smaller batch sizes constantly present designers and programmers of production machines and lines with new challenges. To save time and costs, machine builders increasingly rely on model-based engineering, which creates unimagined potential for efficiency enhancement and cost reduction especially during commissioning – thanks to Bosch Rexroth.

The commissioning of machines is a very elaborate process so far. The reason for this is, among others, that programmers can test and optimize their machine program only on the real machine. Thus, 70% of the time that is needed for the commissioning of the control technology is mainly used for time-consuming and therefore cost-intensive optimization measures of the program. This occupies machine space in the assembly hall and causes considerable additional expenses at approaching delivery dates, like additional night shifts.

However, a majority of this optimization tasks can be virtually performed before through model-based engineering. The advantages are obvious: Starting with the first CAD click, all design data could be created in a PLM system. On this basis, a behavior model of the machine is created. Bosch Rexroth therefore provides 3D models and behavior models of its components. In the simulation software, PLC programmers can then test new control functionalities directly at the behavior model of the virtual machine, without the machine must be set up in the assembly hall.

Controller waits for simulation results

Therefore, a simplified machine model additionally had to be used in the simulation environment so far. The computing power of current PC technology is usually insufficient to simulate the complete machine model synchronously to the real-time behavior of the PLC and motion control.

But this deficit is a thing of the past thanks to the Open Core Engineering from Bosch Rexroth. The controller adapts itself to the timing of the simulation and waits for its results before the next motion cycle is executed. Thus, a real behavior of the simulation of the complete machine model is guaranteed.

When the machine is put into operation at the customer’s site, the engineers only need to start it in the ideal case – more extensive optimizations are thus needless. Open Core Engineering supports all established system simulation platforms like MATLAB Simulink and environments on the basis of the open modelling language Modelica, like the 3DEXPERIENCE platform from Dassault Systèmes or SimulationX.

Consistently digital engineering in practice

The example of the American packaging manufacturer WestRock shows how huge the potential savings are in practice. For the model-based development of their machines, the company relies on the 3DEXPERIENCE platform from Dassault Systèmes, which also supports Open Core Engineering. Directly in the simulation environment, the engineers can thus check and optimize all machine movements and put the control virtually into operation. Subsequently, the knowledge gained here is directly incorporated in the engineering environment IndraWorks from Rexroth. In this way, WestRock could shorten the entire development time from design to commissioning drastically.

Read more about the success story WestRock