IIoT

Improve Your Feeder Bowl System (and Other Standard Equipment) with IO-Link

Guest contributor: Tom Rosenberg, Balluff

One of the most common devices used in manufacturing is the tried and true feeder bowl system. Used for decades, feeder bowls take bulk parts, orient them correctly and then feed them to the next operation, usually a pick-and-place robot. It can be an effective device, but far too often, the feeder bowl can be a source of cycle-time slowdowns. Alerts are commonly used to signal when a feed problem is occurring but lack the exact cause of the slow down.

feeder bowl

A feed system’s feed rate can be reduced my many factors. Some of these include:

  • Operators slow to add parts to the bowl or hopper
  • Hopper slow to feed the bowl
  • Speeds set incorrectly on hopper, bowl or feed track
  • Part tolerance drift or feeder tooling out of adjustment

With today’s Smart IO-Link sensors incorporating counting and timing functions, most of the slow-down factors can be easily seen through an IIoT connection. Sensors can now time how long critical functions take. As the times drift from ideal, this information can be collected and communicated upstream.

A common example of a feed system slow-down is a slow hopper feed to the bowl. When using Smart IO-Link sensors, operators can see specifically that the hopper feed time is too long. The sensor indicates a problem with the hopper but not the bowl or feed tracks. Without IO-Link, operators would simply be told the overall feed system is slow and not see the real problem. This example is also true for the hopper in-feed (potential operator problem), feed track speed and overall performance. All critical operations are now visible and known to all.

For examples of Balluff’s smart IO-Link sensors, check out our ADCAP sensor.

 

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

The Emergence of Device-level Safety Communications in Manufacturing

Guest Contributor: Tom Knauer, Balluff

Manufacturing is rapidly changing, driven by trends such as low volume/high mix, shorter life cycles, changing labor dynamics and other global factors. One way industry is responding to these trends is by changing the way humans and machines safely work together, enabled by updated standards and new technologies including safety communications.

In the past, safety systems utilized hard-wired connections, often resulting in long cable runs, large wire bundles, difficult troubleshooting and inflexible designs. The more recent shift to safety networks addresses these issues and allows fast, secure and reliable communications between the various components in a safety control system. Another benefit of these communications systems is that they are key elements in implementing the Industrial Internet of Things (IIoT) and Industry 4.0 solutions.

Within a typical factory, there are three or more communications levels, including an Enterprise level (Ethernet), a Control level (Ethernet based industrial protocol) and a Device/sensor level (various technologies). The popularity of control and device level industrial communications for standard control systems has led to strong demand for similar safety communications solutions.

Safety architectures based on the most popular control level protocols are now common and often reside on the same physical media, thereby simplifying wiring and control schemes. The table, below, includes a list of the most common safety control level protocols with their Ethernet-based industrial “parent” protocols and the governing organizations:

Ethernet Based Safety Protocol Ethernet Based Control Protocol Governing Organization
CIP Safety Ethernet IP Open DeviceNet Vendor Association (ODVA)
PROFISafe PROFINET PROFIBUS and PROFINET International (PI)
Fail Safe over EtherCAT (FSoE) EtherCAT EtherCAT Technology Group
CC-Link IE Safety CC-Link IE CC-Link Partner Association
openSAFETY Ethernet POWERLINK Ethernet POWERLINK Standardization Group (EPSG)

 

These Ethernet-based safety protocols are high speed, can carry fairly large amounts of information and are excellent for exchanging data between higher level devices such as safety PLCs, drives, CNCs, HMIs, motion controllers, remote safety I/O and advanced safety devices. Ethernet is familiar to most customers, and these protocols are open and supported by many vendors and device suppliers – customers can create systems utilizing products from multiple suppliers. One drawback, however, is that devices compatible with one protocol are not compatible with other protocols, requiring vendors to offer multiple communication connection options for their devices. Other drawbacks include the high cost to connect, the need to use one IP address per connected device and strong influence by a single supplier over some protocols.

Device level safety protocols are fairly new and less common, and realize many of the same benefits as the Ethernet-based safety protocols while addressing some of the drawbacks. As with Ethernet protocols, a wide variety of safety devices can be connected (often from a range of suppliers), wiring and troubleshooting are simplified, and more data can be gathered than with hard wiring. The disadvantages are that they are usually slower, carry much less data and cover shorter distances than Ethernet protocols. On the other hand, device connections are physically smaller, much less expensive and do not use up IP addresses, allowing the integration into small, low cost devices including E-stops, safety switches, inductive safety sensors and simple safety light curtains.

Device level Safety Protocol Device level Standard Protocol Open or Proprietary Governing Organization
Safety Over IO-Link/IO-Link Safety* IO-Link Semi-open/Open Balluff/IO-Link Consortium
AS-Interface Safety at Work (ASISafe) AS-Interface (AS-I) Open AS-International
Flexi Loop Proprietary Sick GmbH
GuardLink Proprietary Rockwell Automation

* Safety Over IO-Link is the first implementation of safety and IO-Link. The specification for IO-Link Safety was released recently and devices are not yet available.

The awareness of, and the need for, device level safety communications will increase with the desire to more tightly integrate safety and standard sensors into control systems. This will be driven by the need to:

  • Reduce and simplify wiring
  • Add flexibility to scale up, down or change solutions
  • Improve troubleshooting
  • Mix of best-in-class components from a variety of suppliers to optimize solutions
  • Gather and distribute IIoT data upwards to higher level systems

Many users are realizing that neither an Ethernet-based safety protocol, nor a device level safety protocol can meet all their needs, especially if they are trying to implement a cost-effective, comprehensive safety solution which can also support their IIoT needs. This is where a safety communications master (or bridge) comes in – it can connect a device level safety protocol to a control level safety protocol, allowing low cost sensor connection and data gathering at the device level, and transmission of this data to the higher-level communications and control system.

An example of this architecture is Safety Over IO-Link on PROFISafe/PROFINET. Devices such as safety light curtains, E-stops and safety switches are connected to a “Safety Hub” which has implemented the Safety Over IO-Link protocol. This hub communicates via a “black channel” over a PROFINET/IO-Link Master to a PROFISafe PLC. The safety device connections are very simple and inexpensive (off the shelf cables & standard M12 connectors), and the more expensive (and more capable) Ethernet (PROFINET/PROFISafe) connections are only made where they are needed: at the masters, PLCs and other control level devices. And an added benefit is that standard and safety sensors can both connect through the PROFINET/IO-Link Master, simplifying the device level architecture.

Safety

Combining device level and control level protocols helps users optimize their safety communications solutions, balancing cost, data and speed requirements, and allows IIoT data to be gathered and distributed upwards to control and MES systems.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

The Evolution of RFID in Metalworking

Guest contributor: Nadine Brandstetter, Balluff

RFID – A key technology in modern production

It’s not just IIoT that has focused attention on RFID as a central component of automation. As a key technology, radio frequency identification has been long established in production. The inductive operating principle guarantees ruggedness and resistance to environmental stress factors. This makes the system highly reliable in function and operation. With unlimited read/write cycles and real-time communication, RFID has become indispensable. The beginnings for the industrial use of RFID go far back. RFID was first successfully used on machine tools in the mid-1980’s. Since the usage of RFID tags on cutting tool holders has been internationally standardized (ISO 7388 for SK shanks, ISO12164 for HSK shanks), there has been strong growth of RFID usage in cutting tool management.

Cutting tool in tool taper with RFID chip

Track-and-trace of workpieces

Modern manufacturing with a wide bandwidth of batch sizes and ever compressed production times demands maximum transparency. This is the only way to meet the high requirements for flexibility and quality, and to minimize costs. Not only do the tools need to be optimally managed, but also the finished parts and materials used must be unambiguously recognized and assigned.

Workpiece tracking with RFID on pallet system

RFID frequencies LF and HF – both RFID worlds come together

In terms of data transmission for cutting tool identification, established systems have settled on LF (Low Frequency), as this band has proven to be especially robust and reliable in metal surroundings. Data is read with LF at a frequency of 455 kHz and written at 70 kHz.

When it comes to intralogistics and tracking of workpieces, HF (High Frequency) has become the standard in recent years. This is because HF systems with a working frequency of 13.56 MHz offer greater traverse speeds and a more generous read/write distance.

As a result, RFID processor units have been introduced that offer frequency-independent application. By using two different read-/write heads (one for tool identification and one for track-and-trace of workpieces) that each interface to a single processor unit, the communication to the control system is achieved in an economical manner.

RFID processor for both tool identification and workpiece tracking

New Hybrid Read-Write Head

Industrial equipment is designed for a working life of 20 years or even more. Therefore, in production you often find machines which were designed in the last century next to new machines that were installed when the production capacity was enlarged. In such a brown field factory you have the coexistence of proven technology and modern innovative equipment. For the topic of industrial RFID, it means that both low frequency and high frequency RFID tags are used. To use both the existing infrastructure and to introduce modern and innovative equipment, RFID read/write heads have been recently developed with LF and HF technology in one housing. It does not matter whether a LF RFID tag or a HF RFID tag approaches the RFID head. The system will automatically detect whether the tag uses LF or HF technology and will start to communicate in the right frequency.

This hybrid read-write head adds flexibility to the machine tools and tool setters as you can use the entire inventory of your cutting tools and tool holders.

RFID Tool ID tag ready for the Cloud

The classical concept of data storage in Tool ID is a decentralized data storage, which means that all relevant data (tool dimensions, tool usage time, machining data, etc.) of a tool/tool holder is stored on the RFID tag which is mounted on the single tool holder. The reliability and availability of this concept data has been proven for more than 25 years now.

With the Internet of Things IIOT, the concept of cloud computing is trendy. All — tool setter, machine tool and tool stock systems — are connected to the cloud and exchange data. In this case only an identifier is needed to move and receive the data to and from the cloud. For this type of data management Tool ID tags with the standard (DIN 69873) size diameter 10 x 4,5 mm are available now in a cost effective version with a 32 Byte memory.

Evergreen – more modern than ever

Learn more about the Evolution of RFID in Metalworking at www.balluff.com  o

Robot Collaborative Operation

Guest contributor: Tom Knauer, Balluff

In previous blogs, we discussed how “Safety Over IO-Link Helps Enable Human-Robot Collaboration” and “Safety & Productivity”. We’ll build on these blogs and dive more deeply into two robot collaborative operating modes: Safety-Rated Monitored Stop (SRMS) and Speed & Separation Monitoring (SSM).

Human-Robot Collaboration

Human-robot collaboration has received a lot of attention in the media, yet there is still confusion about the meaning and benefits of various types of collaboration. In a previous blog we briefly discussed the four collaborative modes defined by the global standard ISO/TS 15066. The most well-known mode is “power & force limiting”, which includes robots made by Universal Robots and Rethink. As the name implies, these robots are designed with limited power and force (and other ergonomic factors) to avoid injury or damage, but they are also slower, less precise and less powerful than traditional robots, reducing their usefulness in many common applications.

Tom-K-Blog-768x267

The safety-rated monitored stop (SRMS) and speed & separation monitoring (SSM) modes are very interesting because they allow larger, more powerful, traditional robots to be used collaboratively — though in a different manner than power & force limited robots. The updated standards allow the creation of a shared workspace for the robot and human and define how they may interact in this space. Both SRMS and SSM require this shared workspace to be monitored using advanced safety sensors and software, which create a restricted space and a safeguarded space. With SRMS, the robot stops before the operator enters the collaborative workspace — this requires a safety sensor to detect the operator. Similarly, in SSM the goal is to control the separation distance between the human and robot, but it can be dynamic, rather than static as in SRMS. The SRMS separation distance can never be less than the protective distance and this requires sensors to verify the separation.

Spaces

The robot’s restricted space is a 3-dimensional area created to limit where the robot can operate. In the past this was done through limit switches, hard stops or sensors such as Balluff’s BNS; now the standards have been updated to allow this to be done in software with internal robot feedback that can dynamically change to adapt to the robot’s programmed operation. The robot controller can now restrict the robot’s motion to a specific envelope and monitor its actual position against its programmed position within this envelope using software tools such as Safe Move or Dual Check Safety.

The safeguarded space is defined and monitored using safety sensors. The robot might know and assure its own safe position within the restricted space, but it doesn’t know whether or not a person or obstruction is in this space, therefore a safeguarded space needs to be created using safety sensors. Advanced sensors not only detect people or obstructions, but can also actively track their position around the robot and send warning or stop signals to the safety controller and robot. Safety laser scanners, 3D safety cameras and other safety sensors can create zones, which can also be dynamically switched depending on the operating state of the robot or machine.

Closely coordinating the restricted space and safeguarded space creates a flexible and highly productive system. The robot can operate in one zone, while an operator loads/unloads in a different zone. The robot sensors monitor the restricted space while the safety sensors monitor the safeguarded space – and when the robot moves to the next phase of operation, these can dynamically switch to new zones. Warning zones can also be defined to cause the robot can slow down if someone starts to approach too closely and then stop if the person comes too close.

Blog_graphic_Safe-space_081718-01

System Linkages

Linking the restricted space and safeguarded space to create an effective, closely coordinated human-robot SSM/SRMS collaborative system requires several elements: a high performance robot and controller with advanced software (e.g. Safe Move), a fieldbus and a variety of built-in and external sensors (standard and safety).

Significant growth in robot collaborative applications utilizing safety-rated monitored stop (SRMS) and speed & separation monitoring (SSM) will occur as robot users strive to improve productivity and safety of traditional robot systems – especially in applications requiring faster speed, higher force and more precision than that offered by power & force limited robots.

To learn more visit www.balluff.com

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Economical and intelligent: Handling solutions re-conceived

Guest contributor: Andreas Gryglewski, Bosch Rexroth

The market for handling and robotic solutions is highly price-driven, yet still leaves room for disruptive ideas. Bosch Rexroth provides proof of this with an advanced solution package for Cartesian kinematics. It combines an economical industrial controller with state-of-the-art web technology and assured instruction via a standard tablet. The result: minimum investment costs and maximum efficiency – before and during operation.

Manufacturers of handling solutions for loading and unloading face fierce competition. The volume market demands cost-optimized, rugged and user-friendly solutions that optimally fulfill all requirements in terms of accuracy and cycle times. In addition, users expect quick commissioning with as little programming, instruction and training expenditures as possible. A high degree of productivity and flexibility is also required for the operational phase in order to reduce downtime and so that format or process changes can be more quickly implemented.

All of these requirements are addressed by Bosch Rexroth with a particularly economical solution package for Cartesian kinematics that combines a high-performance motion controller with state-of-the-art web technologies and innovative value-added features. The automation experts make the solution package even more economical with an especially clever idea: users can perform the setup and assured teaching-in on any standard commercially available tablet.

Industrial control, web technology, consumer tablets

In its solution package for Cartesian kinematics, Bosch Rexroth combines a powerful motion controller with modern web technologies and innovative value-added features.

The disruptive solution approach for Cartesian handling from Bosch Rexroth is particularly suitable for machinery manufacturers and end users who want to implement flexibly and reliably adaptable pick-and-place tasks in a short time and at a low cost. Examples include the loading and unloading of injection-molded parts, the sorting of workpieces, or a wide range of intralogistics applications. Bosch Rexroth combines its proven industrial controller with a webserver and a bracket for a typical standard tablet, by means of which the user can visualize the connected handling solution and – graphically-supported – program, teach-in and adjust it as needed. The solution package is comprised of other basic components such as compact servo motors and drives for the kinematics movement, as well as a safety controller for connecting to the tablet bracket for safe teaching-in. From a single source, Bosch Rexroth also optionally offers the mechanical equipment, includinglinear axes with a belt or ball-screw drive and grabbers.

The utmost in connectivity and IT security

In its new handling solution, Bosch Rexroth placed special emphasis on the two key properties of i4.0 –connectivity and IT security. While the optional IoT Gateway ensures the horizontal and vertical networking, the security router with a newly developed IoT firewall, which is also optional, guarantees secure communication between the tablet and controller. Consequently, unauthorized persons can neither log into the controller nor can a virus attack the controller or spread throughout a company’s IT network.

Bild_2_21263-1200x800

Thanks to the newly developed solution packages, handling systems from Bosch Rexroth can be more quickly commissioned, easily programmed, and taught most economically using standard tablets.

Easy commissioning without parameterization

One of the numerous unique features is the operating concept for the handling solution: Immediately after a servo motor is connected with a drive, the latter reads out the stored parameter set from the feedback memory and thus already has all the characteristic data of the mechanical equipment. The result: a considerable time savings and prevention of errors during commissioning, because the user no longer has to manually enter up to 70 parameters. When Rexroth mechanical equipment is ordered in the future, the parameters will be stored in the feedback memory of the motor while still in the plant. If the user puts his own mechanical equipment into operation; the associated parameter file can also be stored in the feedback memory and is efficiently read into the drive upon connecting.

Safe teaching-in using a standard tablet

The disruptive character of the new handling solution becomes clear during setup, which can be performed wirelessly with almost any consumer tablet. It is expeditiously fastened in a bracket especially developed by Bosch Rexroth for teaching-in, which can be adjusted to the respective size and securely encloses the mobile device. On the top left is a combination emergency stop and enabling button that makes reliable and comfortable teaching-in possible for the user. While the left hand holds the tablet and can press the red button, the right hand is free for other operational tasks. The visualization and operation of the handling system is web-based and applies the HTML5 standard, hence is independent of the tablet OS. An optional security router with an integrated firewall provides for IT security.

Programming without programming knowledge

Bosch Rexroth also made the process programming, which precedes the teaching-in sequence, as uncomplicated as possible. Because it uses the graphical programming language Google Blockly, as is the case with the tablet, no programming skills in conventional terms are required. In order to move an axis from point A to point B, for example, only the start and end positions need to be specified, and a line to connect them with each other. The grabbers are also opened or closed by means of graphical elements. Thanks to variables, logical expressions and loops, it is possible to easily specify and clearly represent various processes, also complex ones if necessary.

Features for increasing productivity and quality

Positively contributing to the performance of an especially economical operating phase of the new handling solution are its versatile functions and expansion options. These ultimately also afford the user a high degree of flexibility for changes in process or format. For example, the Active vibration damping function, which provides greater product quality in combination with a sensor, or initiates the exact countermovements in the open-loop process in the linear module in order to prevent undesirable vibrations or to move sensitive products. Thus, for instance, the utmost in accuracy can be achieved when loading and unloading using the grabber sparing the mechanical equipment for a longer service life.

Preventive maintenance and IoT integration

Preventive maintenance can also be cost-efficiently realized in combined usage with the optional IoT Gateway. In order to collect data for analysis and evaluation of the service life, the motor decoder can also be used as an intelligent sensor. If the motor revolutions are converted into linear movements, the timing for lubrication intervals or the replacement of components can be derived, for example. Communication standards such as OPC UA can provide for easy integration into customer-specific IoT systems as needed.

Economical in every way

The solution package is especially suited for pick-and-place tasks that must be quickly and flexibly adaptable – such as for the loading and unloading of injection-molded parts, the sorting of workpieces, or for various intralogistics applications.

 

With the new solution package, Bosch Rexroth introduces a fresh impetus into the competitive market for Cartesian handling. Automation expertise, modern web and IoT technologies, and productivity-enhancing features are combined in a rugged and practical solution concept that takes into account current and future market requirements, and which generates disruptive energy. Consequently, machinery manufacturers and end users find quick and very economical way to implement a reliable, efficient and flexible handling solution that can be commissioned, taught, and adapted to current requirements without any significant knowledge of programming and parameterization.

Innovative approaches of the new handling system:

  • A comprehensive economic package comprising industrial controller, servo motor, drives, security zone module and teaching-in bracket for consumer tablets
  • Maximum security through a router with firewall (optional)
  • Minimal total cost of ownership thanks to:
    • Commissioning without the need for parameterization: Drives automatically read stored mechanical parameters when connected with a motor
    • Device-independent visualization and operation (HTML5)
    • Safe teaching-in bracket for consumer tablets
    • Simplified process flow design without programming knowledge, thanks to Google Blockly
  • Added value functions for productivity and quality – for example vibration absorption
  • Prepared for data tracking for preventive maintenance
  • Easy integration into IoT systems through open interfaces such as OPC UA

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

5 Ways Flexible Manufacturing has Never Been Easier

Guest Contributor: Tom Rosenberg, Balluff

Flexible manufacturing has never been easier or more cost effective to implement, even down to lot-size-one, now that IO-Link has become an accepted standard. Fixed control and buried information is no longer acceptable. Driven by the needs of IIoT and Industry 4.0, IO-Link provides the additional data that unlocks the flexibility in modern automation equipment, and it’s here now!  As evidence, here are the top five examples of IO-Link enabled flexibility:

#5. Quick Change Tooling: The technology of inductive coupling connects standard IO-Link devices through an airgap. Change parts and End of Arm (EOA) tooling can quickly and reliably be changed and verified while maintaining connection with sensors and pneumatic valves. This is really cool technology…power through the air!

Image1

 

#4. On-the-fly Sensors Programming: Many sensor applications require new settings when the target changes, and the targets seem to always change. IO-Link enables this at minimal cost and very little time investment. It’s just built in.

Image 2

 

#3. Flexible Indicator Lights: Detailed communication with the operators no long requires a traditional HMI. In our flexible world, information such as variable process data, timing indication, machine status, run states and change over verification can be displayed at the point of use. This represents endless creativity possibilities.

Powertrain visualisieren

 

#2. Low cost RFID: Radio Frequency Identification (RFID) has been around for a while. But with the cost point of IO-Link, the applications have been rapidly climbing. From traditional manufacturing pallets to change-part tracking, the ease and cost effectiveness of RFID is at a record level. If you have ever thought about RFID, now is the time.

7_1_Produktionsdaten_Dokumentieren

 

#1. Move Away from Discrete to Continuously Variable Sensors: Moving from discrete, on-off sensors to continuously variable sensors (like analog but better) opens up tremendous flexibility. This eliminates multiple discrete sensors or re-positioning of sensors. One sensor can handle multiple types and sizes of products with no cost penalty. IO-Link makes this more economical than traditional analog with much more information available. This could be the best technology shift since the move to Ethernet based I/O networks.

8_1_induktiver_Abstand

So #1 was the move to Continuously Variable sensors using IO-Link. But the term, “Continuously Variable” doesn’t just roll off the tongue. We have discrete and analog sensors, but what should we call these sensors? Let me know your thoughts!

To learn more about RFID and IO-Link technology, visit www.balluff.com.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Predictive Maintenance for Zen State of Manufacturing

Guest contributor: Shishir Rege, Balluff

In a previous entry, Mission Industry 4.0 @ Balluff, I explained that the industry4-0two primary objectives for Balluff’s work in the area of Industry 4.0 are to help customers achieve high production efficiencies in their  automation and achieve  ‘batch size one’ production.

There are several levers that can be adjusted to achieve high levels of manufacturing efficiencies in the realm of IIoT (Industrial Internet of Things). These levers may include selecting quality of production equipment, lean production processes, connectivity and interoperability of devices, and so on. Production efficiency in the short term can be measured by how fast row materials can be processed into the final product – or how fast we deliver goods from the time the order comes in. The later portion depends more on the entire value-chain of the organization. Let’s focus today’s discussion on manufacturing – inside the plant itself.  The long-term definition of production efficiency in the context of manufacturing incorporates the effectiveness of the production system or the automation at hand. What that means is the long-term production efficiency involves the health of the system and its components in harmony with the other levers mentioned above.

The Zen state of manufacturing – nothing important will come up on Google for this as I made this phrase up.  It is the perfect state of the entire manufacturing plant that continues production without hiccups all days, all shifts, every day. Does it mean zero-maintenance? Absolutely not, regular maintenance is necessary. It is one of those ‘non-value added but necessary’ steps in the lean philosophy.  Everyone knows the benefits of maintenance, so what’s new?

Well, all manufacturing facilities have a good, in some cases very strictly followed maintenance schedule, but these plants still face unplanned downtimes ranging from minutes to hours. Of course I don’t need to dwell on the cost associated with unplanned downtime. In most cases, there are minor reasons for the downtime such as a bad sensor connection, or cloudy lens on the vision sensor, etc. What if these components could alert you well in advance so that you could fix it before they go down? This is where Predictive Maintenance (PdM) comes in. In a nutshell, PdM uses actual equipment-performance data to determine the condition of the equipment so that the maintenance can be scheduled, based on the state of the equipment. This approach promises cost savings over “time-based” preventive maintenance.

PowerSuppliesIt is not about choosing predictive maintenance over preventive maintenance. I doubt you could achieve the Zen state with just one or the other. Preventive and predictive maintenance are both important – like diet and exercise. While preventive maintenance focuses on eliminating common scenarios that could have dramatic impact on the production for long time, predictive maintenance focuses on prolonging the life of the system by reducing costs associated with unnecessary maintenance.  For example, it is common practice in manufacturing plants to routinely change power supplies every 10 years, even though the rated life of a power supply under prescribed conditions is 15 years. That means as a preventive measure the plants are throwing away 30% life left on the power supply. In other words, they are throwing away 30% of the money they spent on purchasing these power supplies. If the power supplies can talk, they could probably save you that money indicating that “Hey, I still have 30% life left, I can go until next time you stop the machine for changing oil/grease in that robot!”

In summary, to achieve the zen state of manufacturing, it is important to understand the virtues of predictive maintenance and condition monitoring of your equipment. To learn more visit www.balluff.us.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.