Bosch puts a face to the connected factory

Guest Contributor: Bosch Media Service

Hannover Messe 2018 (hall 17, booth A40)

  • 1.5 meter tall 3D avatars represent the Factory of the Future
  • Smart soccer table teaches itself with artificial intelligence
  • New portfolio pools software and services for the connected value stream

mag3-cover-blog

Stuttgart and Hannover, Germany – According to the slogan “Factory of the future. Now. Next. Beyond”, the Bosch Group is presenting at Hannover Messe what the company already offers (now) for connected factories, what solutions will soon be available (next) and what it is developing for the future (beyond). Despite all connectivity and automation, humans and their creativity are indispensable in the Industry 4.0 era. Robots support them with complex and time-consuming tasks like data processing and quality control. This is also the message of 1.5 meter tall, Pixar-style 3D avatars. They take centre stage in Hannover and move around the virtual factory. All avatars are mock-ups of market-ready applications or pilot projects. Allow us to introduce them:ActiveCockpit – the Data CollectorThe intelligent communication platform ActiveCockpit from Bosch Rexroth visualizes data to make it easy to understand for everyone. Its gigantic screen informs employees about the production status by processing and visualizing production data in real time. As a result, manufacturing becomes more transparent, while faster information processing enables clear analyses and efficient procedures. Users and companies both benefit from the immediate identification of problems. This reduces downtimes and avoids potential recall costs; the quality level increases.IoT Gateway – the Personal Trainer

Despite the Industry 4.0 hype, some companies have not yet arrived in the digital age. The machines lack sensors, software or the connection to enterprise IT systems – and hence important prerequisites for the connected factory. The Rexroth IoT Gateway can quickly and easily connect both old and new machines for Industry 4.0. The IoT Gateway unites sensors, software and IoT-compatible industrial controls, making it possible to detect the condition of machines. Even operators of older machines can reap the benefits of the connected industry without large investments.

APAS assistant – the Team Player

Humans are key players in the factory of the future: creative intelligence is in the employees’ minds. They are supported by digital devices and robots. The collaborative production assistant APAS assistant, for instance, supports employees with monotonous and ergonomically challenging tasks – without a safety fence. This human-robot collaboration is made possible by an intelligent safety concept. Thanks to its sensor skin, the APAS assistant recognizes its human colleagues without touching them and stops before a collision happens. Once the employee has left the immediate vicinity, the robot independently resumes its work exactly where it stopped before. This interaction of human and machine leads to higher efficiency, and sustainable optimization of the overall productivity, since employees can concentrate on more complex tasks.

ActiveShuttle – the Delivery Guy

Robots also support with internal transport processes. They drive through the factory and, for instance, transport material cases from storage to the production station. With the ActiveShuttle, Bosch Rexroth presents a concept for an intelligent, driverless transport system that automates the internal flow of material and goods. The integrated lifting platform automatically unloads goods in the logistics and manufacturing areas. Cyclical transport or a consumption-based material supply can also be realized with ActiveShuttle.

XDK – the Messenger

The universally programmable IoT multisensor XDK (Cross Domain Development Kit) is the “midwife“ for companies, who want to develop their own applications quickly and flexibly. In a compact box, the XDK combines a variety of MEMS sensors, for instance to measure acceleration, rotation angle, humidity, air pressure or temperature, with a powerful processor for the analysis, processing and transmission of the sensor data. Be it for predictive maintenance, monitoring or retrofitting: the XDK can be deployed universally; the programming language XDK Mita facilitates programming.

Apart from the avatars, Bosch is exhibiting the following highlights:

Foosball: learning by playing thanks to artificial intelligence

Table soccer has to be learned. To do so, we absorb and digest information with our senses, in this case the eyes. With the help of our brain, we learn systematically how to hold, play or pass the ball with the right force at the right time. Artificial intelligence (AI) works according to the same principle: instead of the brain, software processes the information with algorithms; cameras and sensors replace our senses. The soccer table, also called foosball or KI-cker (KI is the German abbreviation for artificial intelligence), teaches itself and optimizes its soccer abilities with every new co-player. Industrial applications such as robots or autonomous vehicles can also learn numerous tasks and optimize their performance thanks to AI. Their biggest advantage: even after the umpteenth try, they will not be frustrated.

Smart Cab for connected farming

Smart Cab, co-developed by Bosch as a member of the CAB concept cluster, turns agricultural vehicles into connected control centres in the field. All components – vehicles, cameras and drones alike – can interact with each other. Via the cloud, camera drones send detailed pictures of the condition of crops to the driver’s cab, and operators are warned by the object recognition camera about living obstacles such as deer. Vehicle users can download specific functions from a feature store over the air directly to the machines. Depending on the weather or soil conditions, for example, the nozzle settings can be adjusted.

Nexeed – new Industry 4.0 software for production and logistics

Connecting the entire value stream

Hardware applications need innovative software solutions running in the background to provide the necessary connectivity. At Hannover Messe, Bosch is presenting its Nexeed new software portfolio, which pools Bosch software and services for production and logistics. The Nexeed solutions make day-to-day work easier for employees and optimize production and logistics processes in terms of transparency, agility, cost, quality and time. The portfolio ranges from the sensor, over machine automation to the cloud. Nexeed solutions can be combined to connect individual lines, entire plants and plant networks, as well as their intralogistics and external goods flow.

Systematic production improvement

The Nexeed Production Performance Manager, for example, ensures systematic improvement of production by helping employees with decision making. For this purpose, the software collects and harmonizes production and machine data from many different sources and “translates” them into a common language. Subject-specific functions like the Ticket Manager, which was developed for the lighting company Osram, make it possible for the employees to complete their tasks faster and more purposeful. Using an app, employees are informed about the status of their more than 80 connected machines at all times. Upcoming tasks such as maintenance work or subsequent material deliveries are displayed, evaluated and assigned to the employee with the appropriate qualification.

Opening the data treasure chest with Data Analytics

The production process produces a large quantity of data of various types – the most important raw material of Industry 4.0. With Nexeed Data Analytics, this data can be used intelligently to identify new optimization potential. Customers do not have to deal with Data Analytics themselves; this task is entirely up to the Bosch experts. They gain important insights from product, process and machine data, which can be used to achieve improvements regarding quality, cost and delivery performance. Customers receive an individual service from the first data analysis to comprehensive prediction models.

Intralogistics en route to the digital age

Compared to modern production, the intralogistics sector is lagging behind regarding connectivity. Nexeed Intralogistics Execution deals with the three big challenges: keeping an eye on the vehicle fleet, optimizing material storage and designing transport routes dynamically. Information on all intralogistics processes are available in real-time. By unifying relevant data from different sources – for example RFID in the internal supermarket, forklift localisation and inventory information – the solution not only helps logistics specialist with the daily work, but also allows long-term planning.

Seamless transparency throughout the supply chain

These days frequent travellers can easily share information about their whereabouts. With Nexeed Track and Trace, Bosch has developed a logistics solution that enables the freight to record a digital travel diary. The software not only shares the current location, but also regularly sends information about temperature, vibration and humidity to the cloud via wireless sensors and gateways. This way, supply chains can be traced and permanently optimized. The international freight forwarding and logistics company Panalpina makes use of these benefits. They use Nexeed Track and Trace for a transparent supply chain – not only on the road, but also in the air. On the first test route between Germany and the recipient plant in the U.S, each package was equipped with a sensor. It records regularly relevant parameters such as vibrations. At each gateway, for instance when unloading the truck at the terminal or loading the airplane on the runway, data and the location of the time-sensitive goods are transmitted to the cloud. The Panalpina sees whether the goods have been loaded into the airplane and how they are doing.

 

Video: https://youtu.be/gqCNU87dgz4

 

Understanding Edge Computing

Guest Contributor: Rittal

With the growth of Artificial Intelligence or AI machinery that takes in information, learns and makes decisions, Edge computing will become not only necessary, but mandatory. The need to process data at the source to ensure acceptable performance will continue to grow with AI and AI will only be able to grow as fast as data storage capabilities grow. edge_923x340

 

To ensure acceptable performance of data processing at the source and reduce latency, Edge Computing will become more important. Formerly only used by large corporations, Edge is now being utilized by small to medium businesses that need services such as peer-to-peer networking, mobile signature analysis, mobile data acquisition, and AI. In the case of machinery, this puts Edge Computing outside of a traditional data center environment and the need for small portable data centers with cooling will spread. According to a recent IDC study by 2020, more than 70% of infrastructure-centric partners will become involved in IoT and Edge Deployment.

image-for-edge-of-possibility (1)

Rittal started in the Industrial Market which is geared towards machinery and outside applications including dust/moisture proof NEMA 12 enclosures here in the U.S. in the 1980’s. Rittal continues to lead the world in global enclosure solutions that include all types of environments. From dirty and extreme temperature fluctuations, to typical clean and climate-controlled environments, Rittal has the right solution for you.

Edge Computing Defined

Edge computing houses data processing capability at or near the “edge” of a network. Usually, servers are contained in a micro data center, with as few as one or two enclosures. Data which is mission-critical, such as a system fail, is captured and available in real-time on site. Edge computing is valuable in capturing bandwidth intensive and latency sensitive data for analysis, lowering operating costs and improving energy efficiency. Lower priority data can be sent to the cloud or to a remote data center.

In Edge Computing, client data is processed at the periphery of the network, as close to the source of the originating data as possible. Companies are moving toward edge computing, driven by economics and efficiency. In edge computing architecture, critical data is processed at the point of origin via a server in close proximity to the output, for immediate and easy access. Data which is not as time sensitive is sent to the cloud or a data center for longer term storage, analysis or compliance record keeping.

The practice of edge computing alleviates the load on network resources. By processing data at the source, only the data required for transfer is shifted to a remote data center or cloud. The amount of data transmitted reduces the strain on bandwidth, and by specifying criteria, data can be sorted to provide key analytics at the site and to push non-essential data to the center.

With IoT and the proliferation of smart devices, edge computing becomes particularly valuable when massive data pushes would overload a data center. When monitoring enclosure temperature for example, it is unnecessary to upload data which will only be valuable to the operations manager in real time. If this data has historical value, it can be pushed to a data center at a later time, or when bandwidth is not at a premium. With edge computing, this illustrates one of its major benefits.

Since edge computing reduces response time to milliseconds, adjustments at the site level can be made almost simultaneously. However, the cloud and data centers will not be made obsolete, since the long term storage capacity is still needed.

Although edge reduces latency and improves accessibility, security concerns and configuration architecture must be addressed. With the distributed architecture of an edge security system, points are increased for system attack. Security breaches and infectious malware may be introduced at vulnerable points.

With the configuration of the device, secure default passwords need to be placed on each device, and vigilance applied to the updating of software to avoid infiltration of malware. Even with the potential points of vulnerability, the overwhelming advantage of the decreased latency and the instant data accessibility overwhelming support the use of edge computing to improve efficiency.

Learn more: https://www.rittal.us/contents/category/products/data-center-solutions/

 

Collaborative Automation…It’s Not Just for Robots

Guest Contributor: Tom Rosenberg, Balluff

Manufacturing is made up of hundreds of discrete operations. Some are repetitive, while others are more diverse. Repetitive tasks are ideal for automation while diverse tasks require more flexibility. And while automation can be extremely flexible, that comes with a high initial investment costs and significant deployment time. The alternative? People!

Humans have the unrivaled ability to adapt to a diverse and flexible manufacturing environment. They can be productive relatively quickly with proper guidance without high initial cost investments.

But as we all know, “to err is human” and this is one of the biggest issues with manual operations. People need a little guidance from time to time. Collaboration is not just for robots; It’s for complete automation systems as well.

Collaborative automation is most important at the point-of-use, where humans are performing critical operations. Some of those common operations include:

  • Manual assembly for low volume or highly flexible operations
  • Delivery of raw materials to the point-of-use
  • Kit assembly for down-stream operation
  • Machine setup and change-over
  • Machine maintenance and calibration

All of these functions can be done error-free and with little training by simply guiding people within their current work envelope, also referred to as their point-of-use. This type of a lean function provides hands-free guidance in the form of indication devices connected directly to your automation system allowing workers to stay focused on the task at hand instead of looking elsewhere for instructions.

With the technology of IO-Link, smart indication devices can now show much more information to all the people involved in specific manufacturing tasks. Automation has an immediate and direct connection to the people that are so vital.

For example, in a manually-fed weld-cell, the smart indicators are capable of not only signaling that the part is loaded correctly, but also whether the part is out of alignment (shown here by the red indicator) or that something wrong with one of the automation components such as a stuck pneumatic clamp.

Figure 1A manually-fed weld-cell with smart indicators is capable of not only signaling that the part is loaded correctly, but also if the part is out of alignment (shown by the red indicator) or that there is something wrong with one of the automation components such as a stuck pneumatic clamp.

Even better, with IIoT technology, trends can be analyzed to determine if the fixture/tool could be optimized for production or to identify common failure points. This all leads to tighter collaboration with operations, maintenance personnel and production supervisors.

A traditional kitting station, sometimes referred to as a supermarket, is another ideal application for smart indicators. Not only can they guide a single operator to the intended part to pull, they can guide multiple operators at the same time.  Also, smart indicators can inform of incorrect pulls, potential bin options (a physically closure bin), directional information, and inventory levels. And again, with IIoT technology, trends can be analyzed to determine proper layout, individual personnel performance and system throughput. The automation system collaborates with operations, forklift drivers and production supervisors.

Regal_v06_01_V3A traditional kitting station, sometimes referred to as a supermarket, with smart indicators to guide operators to the intended part to pull.

So, take a look and see what a collaborative automation system utilizing smart indicators can do for your manual operations. You might be surprised.

Saving up to 90% time with PLC-free programming and commissioning

Guest contributor: Frank Kaufmann, Bosch Rexroth

However efficient PLC programming for complex tasks may be, it is often relatively time-consuming for simple and moderately complex automation solutions. In light of scarce internal resources, machine manufacturers are looking for ways to speed up engineering and shorten delivery times. A new solution is Sequential Motion Control SMC, a virtually universal technology function for IndraDrive servo drives. It reduces users’ programming and commissioning work by up to 90 percent compared to PLC programming.

Career portals clearly show the lack of skilled labor: in Germany alone, there are more than ten thousand vacancies for PLC programming and commissioning specialists. The situation is no better in other countries. The lack of skilled labor not only lengthens the time to market for new machines – it also makes it more difficult to develop lucrative services, for example adapting installed stations to new tasks.

If orders are delayed owing to capacity bottlenecks, this annoys customers. This makes it all the more important to come up with an alternative to complex, time-consuming PLC programming. This is where drive-based Sequential Motion Control SMC comes in. It uses the intelligence of servo drives for applications with up to six axes yet requires no external motion control system. The integrated motion control system, on-board I/Os and expandable I/O cards reduce hardware costs and make system integration easier.

1 DC-AE_Bild1_SMC_PAN3237_201810_mn

Ten automation solutions in the time it would take for one

Lean engineering offers particularly exciting opportunities for machine manufacturers as it allows them to put in place up to ten automation solutions in the time it would normally take for one. As a result, they can step up the pace instantly and ultimately increase their turnover. Independent investigations and empirical findings show that the PLC programming and commissioning work for a flying cutter takes slightly more than a man-week. With SMC, the same result can be achieved in just four man-hours.

With a single command, SMC controls complete motion sequences which the user arranges one after another. These sequences are based on a wealth of automation experience in areas ranging from wood processing to the packaging industry and can cope with simple and moderately complex tasks in a virtually universal manner. With pre-defined commands, users can achieve independent positioning axes, axis and master axis couplings, synchronous axis operation, cam profile applications and sequential movements. Applications range from handling systems, processing stations and test stands to flying cut-off. A wide range of special functions are available: With just a few lines, users can activate head cutting, parts movements, maximum lifting routines, reverse optimization, short length processing and other functions.

2 DC-AE_Bild2_MonitorMann_PSO2684_201810_mn

90 percent faster engineering – with SMC for IndraDrive, axis couplings, synchronous axes and sequential motion sequences can be achieved much more quickly.

3 DC-AE_Bild3_SMC_Screen_PSO3238_201810_mn

With SMC, users can achieve independent positioning axes, axis and master axis couplings, synchronous axis operation, cam disc applications and sequential movements with pre-defined commands.

Eight commands replace 200 lines of PLC code

When engineering, routine tasks such as defining operating modes, diagnostics and error handling take up significant amounts of time. Up until now, these tasks which are often unpopular accounted for up to two thirds of overall programming time although they barely contribute towards the specific solution. With the SMC option, the drives are pre-configured in the factory, thus eliminating these routine tasks. Thanks to this pre-configuration, users can begin task programming and commissioning straight away.

Sequential programming also helps less experienced technicians to create automation solutions geared to particular applications quickly. A practical example: in an open PLC such as the IEC 61131-3, the programming code for a pair of flying shears is more than 200 lines long. With SMC, the user arranges eight commands one after another and then only needs to optimize the processing procedure. Users merely need to learn around 70 commands. They include complete applications and command up to six axes at the same time with one instruction. Users issue step and motion control commands, use closed-loop force and torque controls and query I/Os.

4 DC-AE_Bild4_SMC_Screen_PSO3238_201810_mn

PLC code with just eight commands reduced to 14 lines. With SMC, programming and commissioning a pair of flying shears takes less than half a day.

Optimizing variables directly

SMC includes a manual mode for setting up and referencing axes, a parameterization mode and an automatic mode for working through the programs. In automatic mode, the solutions can control up to four tasks in parallel. At the same time, a cyclic task allows statuses and diagnoses to be called up at any time. Users can therefore observe and optimize variables while the program is running.

Quick solutions for emerging markets

The level of automation in China and other emerging markets is increasing very quickly at the moment. At the same time, there is a lack of programmers with an expert knowledge of PLC in these countries. With online help, watch-listen and tools for debugging or program management, the free SMC Editor helps even technicians with little experience. If necessary, users can use ready-made templates for visualization or create their own.

Owing to increasingly short product life cycles, rapid automation is also becoming more important in mature markets. Concepts such as Bosch Rexroth’s factory of the future are highly flexible and allow the production of very small quantities – even down to a batch size of 1. In the future, end users will be able to adapt their production lines flexibly according to orders at very short intervals and will require new motion sequences and additional processing stations at short notice.

The new processing stations must also fit into connected production lines. As a result, an open system for sharing data and information with other machines and higher-level IT systems is a must. The Sercos automation bus allows real-time cross-communication – an important requirement when it comes to precise synchronization with other process movements. Via software, the user selects in the multi-Ethernet interface one of the common protocols such as Sercos, PROFINET IO, EtherNet/IP and EtherCAT as well as the safety protocols CIP Safety on Sercos, Fail Safe over EtherCat and PROFIsafe on PROFINET.

Another task which only very experienced programmers were able to cope with relates to machine safety. Rexroth’s SafeMotion reduces the time required with certified safety functions. As a result, users do not need any additional safety control system in order to meet the requirements and standards of the Machinery Directive.

Increasing turnover with existing resources

The lack of skilled labor will remain a problem for the global mechanical engineering sector in the long term. SMC is a practically oriented approach for simplifying programming and commissioning. Machine manufacturers can therefore significantly increase the number of automation solutions that they supply even without additional PLC programmers. At the same time, the available specialists can concentrate on automating more complex tasks and here too reduce the time to market considerably.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Safely Switch Off Cylinders While Transmitting Field Data

Guest contributor: Matthias Wolfer, Balluff

 

Is it possible to safely switch off cylinders while simultaneously transmitting field data and set up the system in accordance with standards? Yes!

In order to rule out a safety-critical fault between adjacent printed circuit board tracks/contact points (short circuit) according to DIN EN ISO 13849, clearance and creepage distances must be considered. One way to eliminate faults is to provide galvanic isolation by not interconnecting safety-relevant circuits/segments. This means  charge carriers from one segment cannot switch over to the other, and the separation makes it possible to connect the safety world with automation — with IO-Link. Safely switching off actuators and simultaneously collecting sensor signals reliably via IO-Link is possible with just one module. To further benefit from IO-Link and ensure safety at the same time, Balluff’s I/O module is galvanically isolated with a sensor and an actuator segment. The two circuits of the segments are not interconnected, and the actuator segment can be safely switched off without affecting the sensors. Important sensor data can still be monitoring and communicated.

The topological structure and the application of this safety function is shown in this figure as an example:

2D-SAGT-Betriebsanleitung_v2

  1. A PLC is connected to an IO-Link master module via a fieldbus system.
  2. The IO-Link master is the interface to all I/O modules (IO-Link sensor/actuator hubs) or other devices, such as IO-Link sensors. The IO-Link communication takes place via a standardized M12 connector.|
  3. Binary switching elements can be connected to the galvanically isolated sensor/actuator hub (BNI IOL-355). The four connection ports on the left correspond to the sensor segment and the four ports on the right correspond to the actuator segment. Communication of the states is done via IO-Link.
  4. The power supply for both segments takes place via a 7/8″ connection, whereby attention must be paid to potential separated routing of the sensor and actuator circuits. Both the power supply unit itself and the wiring to the IO-Link device with the two segments must also ensure external galvanic isolation. This is made possible by separating the lines with a splitter.
  5. An external safety device is required to safely interrupt the supply voltage of the actuator segment (four ports simultaneously). Thus, the module can implement safety functions up to SIL2 according to EN62061/PLd and ISO 13849.

For example, this can happen through the use of a safety relay, whereby the power supply is safely disconnected after actuation of peripheral safety devices (such as emergency stops and door switches). At the same time, the sensor segment remains active and can provide important information from the field devices.

The module can handle up to eight digital inputs and outputs. If the IO-Link connection is interrupted, the outputs assume predefined states that are retained until the IO-Link connection is restored. Once the connection is restored, this unique state of the machine can be used to continue production directly without a reference run.

An application example for the interaction of sensors and actuators in a safety environment is the pneumatic clamping device of a workpiece holder. The position feedback of the cylinders is collected by the sensor segment, while at the same time the actuator segment can be switched off safely via its separately switchable safety circuit. If the sensor side is not required for application-related reasons, galvanically isolated IO-Link modules are also available with only actuator segments (BNI IOL 252/256). An isolated shutdown can protect up to two safety areas separately.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

THE LARGEST FLOW ON THE MARKET

Guest contributor: Dr. Till Deubel, Head of Development, Cartridge Valves, Bosch Rexroth

When it comes to valves, maintaining performance with an increased flow rate can be extremely good news for manufacturers. It allows them to meet the same requirements with a smaller machine size or maximize manufacturing performance with a minimized footprint. 

Our brand-new WRC-4X directional high-response cartridge valves not only meet high dynamics and flow requirements, they can also be integrated into networked environments.

As they feature integrated electronics with a multi-Ethernet interface and OCI for Drives, WRC-4X valves can be integrated into networked environments even with an analog signal input.

inpage.jpg

Next generation thinking

Once again, we’re pleased to be moving technology forward – increasing performance and communication for hydraulic actuators with our next generation of WRC-4X directional high-response cartridge valves. These valves are more dynamic and consistently achieve flows that could previously only be met by using the next highest available size. In fact, they provide the largest flow on the market.

Integrated electronics (OBE) allow the new valve series to be networked via open interfaces with higher-level control units and Industry 4.0 environments, even when used with an analog signal input. This means that the valves are ready be integrated right away into even the most cutting edge automation concepts and can benefit from predictive maintenance.

Flexing to future challenges

Our new cartridge valve blocks are ideal for applications with high flow and dynamics requirements, such as:

  • Presses
  • Die-casting
  • Injection molding machines

Using sophisticated co-simulations with flow analyses and strength calculations, our developers have optimized channel geometries and enabled different sized valves to achieve significantly higher flow levels. This means they can consistently achieve values that would previously have only been possible by using valves the next size up.

The valves can be operated via digital and analog control signal input. In both cases, the integrated electronics (OBE) enable the valves to be seamlessly integrated into digitally networked automation environments and Industry 4.0 applications. WRC-4X valves also feature an open interface that enables communication with a range of programs. So machine manufacturers and operators can incorporate the valves into condition monitoring systems and benefit from predictive maintenance.

Learn more:  https://www.boschrexroth.com/en/xc/products/product-groups/industrial-hydraulics/index

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Safety Over IO-Link Helps Enable Human-Robot Collaboration

Guest Contributor: Tom Knauer, Balluff

Safety Over IO-Link makes it easier to align a robot’s restricted and safeguarded spaces, simplifies creation of more dynamic safety zones and allows creation of “layers” of sensors around a robot work area.

For the past several years, “collaboration” has been a hot topic in robotics.  The idea is that humans and robots can work closely together, in a safe and productive manner.  Changes in technology and standards have created the environment for this close cooperation. These standards call out four collaborative modes of operation: Power & Force Limiting, Hand Guiding, Safety Rated Monitored Stop, and Speed & Separation Monitoring (these are defined in ISO/TS 15066).

Power & Force Limiting

Power & Force Limiting is what many people refer to when speaking about Collaborative Robots, and it applies to robots such as Baxter from Rethink Robotics and the UR series made by Universal Robots.  While the growth in this segment has been fast, there are projections that traditional robots will continue to make up 2/3 of the market through 2025, which means that many users will want to improve their traditional robot solutions to “collaborate”.

Hand Guiding

Hand guiding is the least commonly applied mode, it is used for very specific applications such as power assist (one example is loading spare tires into a new car). It generally requires special equipment mounted on the robot to facilitate the guiding function.

Safety Rated Monitored Stop and Speed & Separation Monitoring

Safety Rated Monitored Stop and Speed & Separation Monitoring are especially interesting for traditional robots, and require safety sensors and controls to be implemented.  Customers wanting closer human-robot collaboration using traditional robots will need devices such as safety laser scanners, safety position sensors, safety PLCs and even safety networks – this is where Safety Over IO-Link can enable collaborative applications.

SAfety

Many of IO-Link’s well-known features also provide advantages for traditional robot builders and users:

1) Faster & cheaper integration/startup through reduction in cabling, standardized connectors/cables/sensors and device parameterization.

2) Better connection between sensors and controllers supports robot supplier implementation of IIoT and improved collaboration by making it easier to gather process, device and event data – this allows improved productivity/uptime, better troubleshooting, safer machines, preventative maintenance, etc.

3) Easier alignment of the robot’s restricted and safeguarded spaces, simplifying creation of more dynamic safety zones to support closer human-robot collaboration.

The third item is especially relevant in enabling collaborative operation of traditional robots.  The updated standards allow the creation of a “shared workspace” for the robot and human, and how they interact in this space depends on the collaborative mode.  At a simple level, Safety Rated Monitored Stop and Speed & Separation Monitoringrequire this “shared workspace” to be monitored, this is generally accomplished using a “restricted space” and a “safeguarded space.”  These “spaces” must be monitored using many sensors, both inside and outside the robot.

First, the robot’s “restricted space” is set up to limit the robot’s motion to a specific 3-dimensional volume.  In the past, this was set up through hard stops, limit switches or sensors, more recently the ANSI RIA R15.06 robot standard was updated to allow this to be done in software through safety-rated soft axis and space limiting.  Most robot suppliers offer a software tool such as “Safe Move” or Dual Check Safety” to allow the robot to monitor its own position and confirm it is where it is supposed to be.  This feature requires safe position feedback and many sensors built into the robot.  This space can change dynamically with the robot’s program, allowing more flexibility to safely move the robot and assure its location.

Second, a safeguarded space must be defined and monitored.  This is monitored using safety rated sensors to track the position of people and equipment around the robot and send stop (and in some cases warning) signals to the safety controller and robot.  Safety Over IO-Link helps connect and manage the safety devices, and quickly send their signals to the control system.

In the past, integrating a robot with safety meant wiring many safety sensors with long cable runs and many terminations back to a central cabinet.  This was a time consuming, labor intensive process with risk of miswiring or broken cables.  IO-Link significantly reduces the cost, speed and length of connections due to use of standard cables and connectors, and the network approach.  It is also much simpler for customers to change their layout using the network, master & hub approach.

Customers wanting collaborative capability in traditional robots will find that Safety Over IO-Link can significantly simplify and reduce the cost of the process of integrating the many advanced safety sensors into the application.

To learn more, visit www.balluff.com.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.