Automation

5 Manufacturing Trends to Consider in 2022

by Will Healy III, Balluff

Well, it’s that time of year again were we all start to forget the current year (maybe that’s ok) and start thinking of plans for the coming year. Strategy and budget season! 2022 is only a few weeks away! …maybe it’s just me that’s doing planning for the new year already! I thought I’d share 5 insights I’ve had about 2022 that you might benefit from as you start thinking of the new year.

1️⃣ Electric Vehicles. The Electric Vehicles manufacturing market is receiving major investments, machine builders are building up expertise and consumers are trending towards more electric vehicles according to PEW research, 7% of US adults say they currently own a hybrid or electric but 39% say the next time they purchase a vehicle they are at least somewhat likely to seriously consider electric. Traditional automotive won’t go away any time soon, but I see this as a growth generator. (https://www.pewresearch.org/fact-tank…)

2️⃣ Automation in Ag & Food. Automation in the Agriculture, Food, Beverage & Packaging markets is also growing strong with more demand for packaged goods and more SKUs than ever before. Urbanization combined with shortages in agriculture labor markets are driving investments in automation technologies in manufacturing and on the farm. Robotic agriculture startups seem to be growing faster than weeds and are providing real value for those who are struggling to get product from the field to the factory.

3️⃣ Supply Chain Disruption. I’ve seen several economists say the chip shortage will be with us well into 2023 and now I hear rumors of plastics or other materials having disruptions. Disruption might be the new normal for the short to mid-term. I flew out of LAX a few weeks ago and there were dozens of container ships parked outside the port. We are also seeing a major breakdown of our “over-land” logistics infrastructure. Investment in automation and labor for this market will be vital to a strong recovery. Plan for these things and be willing to have open and honest discussions with your vendors and your customers. Untruths might get you by in the short term but could permanently damage your business relationships for years.

4️⃣ Real not Marketing Sustainability. With the increase of Generation Z (18-24year old) workers in our economy, they are pushing us to truly work towards sustainability much more than Millennials did before them. What this means is other markets that I see as growth opportunities are ones where we can have big impact on this like: mining, waste/recycling and agriculture.

5️⃣ Technology as an HR tool. All manufacturers will be impacted by the skills-gap and labor shortage if you aren’t already. Part of your strategy for 2022 must include automation and robotics as part of your labor strategy. How can we use automation and robotics to do our dull, dirty, dangerous jobs or How can we use automation and robotics to extend the careers of our long-term experienced workers? What disruptive technology should you be investing in? 3D printing, machine vision, AR/VR, exoskeletons, drones, virtual twin, AI, Predictive Maintenance, Condition Monitoring, Smart Sensors. Pick something you will do different, you have to. What do you see for 2022 that will have a major impact on our businesses?

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Adding a higher level of visibility to older automation machines

It’s never too late to add more visibility to an automation machine.

In the past, when it came to IO-Link opportunities, if the PLC on the machine was a SLC 500, a PLC-5, or worse yet, a controller older than I, there wasn’t much to talk about. In most of these cases, the PLC could not handle another network communication card, or the PLC memory was maxed, or it used a older network like DeviceNet, Profibus or ASi that was maxed. Or it was just so worn out that it was already being held together with hope and prayer. But, today we can utilize IIoT and Industry 4.0 concepts to add more visibility to older machines.

IIOT and Industry 4.0 have created a volume of products that can be utilized locally at a machine, rather than the typical image of Big Data. There are three main features we can utilize to add a level of visibility: Devices to generate data, low cost controllers to collect and analyze the data, and visualization of the data.

Data Generating Devices

In today’s world, we have many devices that can generate data outside of direct communication to the PLC.  For example, in an Ethernet/IP environment, we can put intelligent devices directly on the EtherNet/IP network, or we can add devices indirectly by using technologies like IO-Link, which can be more cost effective and provide the same level of data. These devices can add monitoring of temperature, flow, pressure, and positioning data that can reduce downtime and scrap. With these devices connected to an Ethernet-based protocol, data can be extracted from them without the old PLC’s involvement.  Utilizing JSON, OPC UA, MQTT, UDP and TCP/IP, the data can be made available to a secondary controller.

Linux-Based Controllers

An inexpensive Raspberry Pi could be used as the secondary controller, but Linux-based open controllers with industrial specifications for temperature, vibration, etc. are available on the market. These lower cost controllers can then be utilized to collect and analyze the data on the Ethernet protocol. With a Linux based “sandbox” system, many programming software packages could be loaded, i.e. Node-Red, Codesys, Python, etc., to create the needed logic.

Visualization of Data

Now that the data is being produced, collected and analyzed, the next step is to view the information to add the extra layer of visibility to the process of an older machine. Some of the programming software that can be loaded into the Linux-based systems, which have a form a visualization, like a dashboard (Node-Red) or an HMI feel (Codesys). This can be displayed on a low-cost monitor on the floor near the machine.

By utilizing the products used in the “big” concepts of IIOT and Industry 4.0, you can add a layer of diagnostic visualization to older machines, that allows for easier maintenance, reduced scrap, and predictive maintenance.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Improving sawmill yield through automation

Guest contributor: Christian Holder, Balluff

It is not a surprise that optimizing yield is one of the most important objectives in a sawmill (or lumber mill) as it is in any other industry. The big difference is that there is hardly any control over the quality of the logs that enter the sawill. In the ideal world all logs are not only cylindrical in shape but also straight. But obviously each individual log is unique in shape. Crooked, out-of-round, or tapered logs are common and even worse: usually it is a combination of these shapes.

Still the target is to recover as much yield from each log as possible. Therefore sawmills turn into highly automated factories with three dimensional (3D) measurement of logs, and advanced equipment for primary and secondary breakdown. Basically there are three areas of automation in a sawmill:

  1. 3D measurement for optimum cutting pattern to recover most yield from a log
  2. Automation of drives to position the log itself, or tools (e.g. sawblades, knifes, canter heads…) at high velocity to increase throughput
  3. Automation of log and lumber handling to minimize the gap between the logs

All of the three areas support the sawmill’s target to get the most out of the logs at the highest speed. The worst case is any downtime as it directly impacts the whole log to lumber process. Therefore electrical engineers look for sensors that meet the challenges of the sawmill environment. Mainly sensors must meet high vibration and shock standards. As they are exposed to the environment, protective housings help to protect the sensors from logs crashing into them.

From logs to lumber

Wave feeder with analog distance sensor

To efficiently process logs to lumber, sawmills use dedicated equipment for different sizes of logs. As a result bigger mills have a primary and a secondary breakdown area. Independent from the logs, sawmills aim to minimize the gaps and to avoid changes in the setup. This allows them to run faster and to increase the production rate. Here is the process how a log turns into lumber in a sawmill.

When a log arrives at the mill it is indexed onto the infeed conveyer (could be a step feeder or log loader). Either inductive sensors sequence the steps. Or a magnetostrictive position sensor (linear transducer) provides feedback of the step position of the loader to control motion and speed. Once the log is on the loader analog distance sensors determine the distance to the end of the log from the side of the loader wall.

This is to ensure a constant distance between the logs (log gap) as they enter the sawmill. Knowing the distance enables them to control when the log is loaded on the conveyor. And thereby they can control the gap. As an alternative photoelectric a thru beam sensor determines if a log is present for the final two steps on a loader. These sensors work with a long measuring range. Additionally they have a large functional reserve and are very resistant to dirt and dust.

Primary breakdown – from raw log to slabs and cants

The first step of the log is to run through a debarker that removes the bark. As there are tolerances in shape, linear transducers and photoelectric analog distance sensors are used to determine log sizes. These sizes help to adjust the debarker’s pressure and speed. After debarking the logs are cut to the best pre-determined length by cut-off or bucking saws. Again linear transducers are used to control the motion of the cut-off saw swing.

By stacking some photoelectric through beam sensors they can be used to determine the log diameter roughly. This leads to increasing speed as the saw can cut through smaller logs faster and has to slow down for larger logs. Many mills just sort their debarked logs into “large logs” and “small logs” based on their diameters.  And then go into machines that are set up for those particular log sizes.

Log carriage for 20″ (50cm) logs and more

Carriage saw using BTL for clamping and positioning
Carriage saw with BTL for positioning

Many mills also run a lot of larger logs and therefore have a log carriage. This is a single band saw with a carriage that runs on railway style tracks. The carriage has three or four knees that have positioners and log clamps (dogs) that hold the log. In the knees hydraulic cylinders with magnetostrictive transducers position the log. Even under extreme surrounding conditions, these position sensors guarantee a high machine and system availability. The clamps hold the log while it movesthrough the band saw. The carriage cuts the logs into slabs (two flat, two rounded sides) or into cants (four flat, square sides).

Secondary Breakdown – from small logs, slabs and cants to lumber

Mills that run smaller logs do not have to break down the logs prior to putting them through the secondary breakdown equipment. After the cut-off saw, the small logs will be sorted by size into bins. Step feeders index them again onto a conveyor and that feeds them through a Scanner into the small log line machine. To recover as much yield as possible log turners turn the logs in the optimum position. Chipper canters center them to enable curve sawing, which leads to increased lumber recovery.

Hydraulic drives dominate small log lines and all motion control happens with linear position transducers. Typical small log lines consist of log turning and centering, chipping with canter heads, saw box slew and skew, saw box positioniers, profiling heads and outfeed pickers. All of the equipments’ design aims for speed and therefore they require fast and accurate position feedback. Sensors and transducers must withstand high shock and vibration. Balluff’s products survive even in toughtest environments and undergo intensive shock and vibration testing.

Shifting edgers and curve sawing

Edgers using BTL for curve sawing
Sawblade Adjustment with BTL

Gang edgers and shifting edgers cut cants and slabs from the primary breakdown into boards. Gang edgers have circular saws stacked at fixed spacing. Shifting edgers look similar to gang edgers except that they change spacing  between saw blades can be changed. Therefore each saw is connected to a hydraulic positioner. A scanner looks at the cant or slab and determines the best solutions of cuts to produce best results. After the scanner the positioners of the shifting edgers set the new saw spacing to match that solution.

Edger optimizers pre-position the board and optimize the infeed to get the best payback from the machine. Photoelectric (laser) retroreflective sensors  track boards through the ducker table. The infeed position cylinder (with integrated linear transducer) skews the board in the best position to be fed in the edger.

Trimming, sorting, stacking, strapping, shipping

Photoelectric sensors detect boards at the trimmer infeed

The boards go into bins when they come out of the edgers. Another scanner determines if the board can be cut down into shorter boards. Or if a damaged end needs to be cut off so that the board is not graded lower. The next step is processing the board through a trimmer. The trimmer is a set of up to about a dozen circular saws positioned across the conveyor. It can cut longer boards down into two or three shorter boards or just trim the ends.

Photoelectric analog distance sensors detect stacked boards from high distance

Background suppression photoelectric sensors at the indeed of the trimmer look down at the board as it goes into the machine. And they determine if the board is actually as long as the scanner information indicates. The same sensors confirm after the trimmer that the board was cut down to the proper size. After the trimmer they go into a sorter and and from there to stacking and strapping to final shipment.

We provide additional information how our sensors help to automate sawmills on our website.

Veneer instead of solid wood

A sawmill produces solid wood. This means that the board is out of one piece of wood. Another type of boards is veneer. This means that thin layers of wood are glued together to reach a board. Usually these layers are less that 3 mm thick. A lathe continuously turns a log against a blade to peel it. With each rotation the log becomes thinner. Therefore the blade position needs to be adjusted. Hydraulic cylinders with integrated linear transducers centerthe log and position the blade to peel the trunk. The thin layers are glued together in a veneer press.

Not only stationary, but also portable sawmills

In the end our sensors and transducers not only help to automate huge mills, but also portable sawmills. Magnetostrictive or magnetically sensors enable operators to exactly position the saw unit. So they achieve accurate and fast cutting of boards. Wood-Mizer is a world leading supplier of efficient and fast portable sawmills that uses magnetostrive position sensors in it’s machines. The reasons for Balluff are its product and service quality as well as the availability.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

The product carousel turns – cabinet free into the future

DC-AE-SMP5_Blog_IndraDriveMi_Teaser_gg

Guest contributor: Reinhard Mansius, Bosch Rexroth

Do you ask yourself how to produce smallest quantities in an economically viable manner? That is no problem in the factory of the future: You are able to move your machines within the factory hall or take processing stations out of a production line, reposition them and then continue production at the push of a button. Cabinet-free drive technology is a key technology here with decentralized intelligence and comprehensive communication capabilities.

Looking in any supermarket will reveal promotional packs with twenty percent extra free or special products for Easter, summer, Halloween and Christmas. The product carousel is turning at an ever increasing pace. However, the life cycles of furniture, electronic products and cars are becoming shorter and shorter as well. At the same time, online retail accounts for an increasing share of the market. Consumers like to use online configurators in order to customize their products. As a result of this, you as a manufacturer may have to make production changes several times a week instead of producing the same products over many years. In the future, even this might not be enough and refitting may be necessary on an hourly basis.

On the basis of customer applications and numerous automation projects in our own plants, we have analyzed the requirements of such varied production processes and developed a vision for the factory of the future. Only the ceiling, the walls and the floor of the factory hall will be immovable. In contrast, it will be possible to configure machines and processing stations to create new production lines which will communicate wirelessly with each other. As a result of this approach, control cabinets will be obsolete or will no longer play a central role.

Control cabinets on their way out

The aim in automation: Making production changes primarily via software, with no manual cabling work. With traditional automation concepts, all cables lead from the actuators and sensors to the control cabinet and back again. In practice, this represents a bottleneck when it comes to installation and refitting. In contrast, the IndraDrive Mi servo drives are geared to and integrated into motors. They reduce the amount of cabling work required and take up no space in the control cabinet. They are installed with all necessary supply components in a decentralized manner in the machine or processing station. Up to 30 servo drives form a drive group on a hybrid cable string for power and communication. Only the first drive has an external connection to the higher-level control systems so that changes do not require cabling work on the control cabinet.

Bild1_36475-1200x848
The IndraDrive Mi servo drives are geared to and integrated into motors.

Switch off, reposition, switch on and carry on producing

This flexibility is available for a wide power range – from 0.4 kW to 11 kW. The drives without control cabinets have as standard four digital, freely configurable I/O connections for peripherals and sensors on board. Two of these can be used as quick measuring probes. By decoupling control communication, constructors can integrate further I/O modules, sensors and actuators for pneumatics or hydraulics. This means that automation is completely decentralized. As a result, it is very easy to make changes to the factory of the future later on. Simply switch off the station, pull out one or two plugs, push the machine to its new location, switch it on and carry on producing.

Simple, reliable commissioning

You as a machine manufacturer have scarce engineering resources which need to be used efficiently. Pre-defined, pre-programmed technology functions allow many tasks such as those involving cam discs or cam gears to be performed more quickly. With the integrated Motion Logic for individual axes, the drives take on axis-related processes independently of the central control system.

Engineering tools geared to the tasks make integration into modern concepts easier and save time. The Drive System software allows quick and reliable commissioning because its reads and applies the mechanical data from the motor encoders of the Rexroth motors. At the same time, the IndraDrive Service Tool offers easy access to service and diagnostic functions and also allows the software to be parametrized and updated. The tool which is independent of operating systems runs on HTML5-capable browsers and uses the web server which is integrated into the drive. This architecture makes it easier to replace components, while the tool offers practical access management with guest and service rights.

Bild_4_29539-1200x902
Regardless of the sector – cabinet-free drive technology is revolutionizing mechanical engineering, significantly reducing costs and improving flexibility.

Communicative in a wide range of environments

Another key requirement for the factory of the future is that it can fit into connected environments and share information flexibly. You as a machine manufacturers are looking for drive solutions which allow them to cater for the different protocols in specific regions and sectors with a single item of hardware and thus simplify their entire logistics from ordering to the supply of spare parts. Cabinet-free drive technology meets this requirement with its multi-Ethernet interface. It supports all common protocols via software selection.

Ready for high-level language functions

Bosch Rexroth’s Open Core Engineering software technology allows you to access core drive functions and the integrated Motion Logic alongside PLC automation with high-level language programs.

In the future, you will be able to use Open Core Engineering for Drives to develop or purchase previously unseen web and cloud-based functions in high-level languages. This will establish a link between intelligent servo drive and server- and cloud-based applications. High-level language programming will open up entirely new connectivity options for you. Without complex PLC interfaces, you will be able to digitize the value stream – from recording an order in the ERP system and the MES systems to the drive.

Are you ready for new flexibility?

By modular concepts you will be able to streamline your processes or machines and stations and set them up flexibly and without control cabinet modifications to create new production lines geared to specific order requirements: the factory of the future is an evolutionary process which has already begun. Cabinet-free drive technology is helping you to meet the new requirements as regards flexibility economically, intelligently and safely – today.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Bosch puts a face to the connected factory

Guest Contributor: Bosch Media Service

Hannover Messe 2018 (hall 17, booth A40)

  • 1.5 meter tall 3D avatars represent the Factory of the Future
  • Smart soccer table teaches itself with artificial intelligence
  • New portfolio pools software and services for the connected value stream

mag3-cover-blog

Stuttgart and Hannover, Germany – According to the slogan “Factory of the future. Now. Next. Beyond”, the Bosch Group is presenting at Hannover Messe what the company already offers (now) for connected factories, what solutions will soon be available (next) and what it is developing for the future (beyond). Despite all connectivity and automation, humans and their creativity are indispensable in the Industry 4.0 era. Robots support them with complex and time-consuming tasks like data processing and quality control. This is also the message of 1.5 meter tall, Pixar-style 3D avatars. They take centre stage in Hannover and move around the virtual factory. All avatars are mock-ups of market-ready applications or pilot projects. Allow us to introduce them:ActiveCockpit – the Data CollectorThe intelligent communication platform ActiveCockpit from Bosch Rexroth visualizes data to make it easy to understand for everyone. Its gigantic screen informs employees about the production status by processing and visualizing production data in real time. As a result, manufacturing becomes more transparent, while faster information processing enables clear analyses and efficient procedures. Users and companies both benefit from the immediate identification of problems. This reduces downtimes and avoids potential recall costs; the quality level increases.IoT Gateway – the Personal TrainerDespite the Industry 4.0 hype, some companies have not yet arrived in the digital age. The machines lack sensors, software or the connection to enterprise IT systems – and hence important prerequisites for the connected factory. The Rexroth IoT Gateway can quickly and easily connect both old and new machines for Industry 4.0. The IoT Gateway unites sensors, software and IoT-compatible industrial controls, making it possible to detect the condition of machines. Even operators of older machines can reap the benefits of the connected industry without large investments.

APAS assistant – the Team Player

Humans are key players in the factory of the future: creative intelligence is in the employees’ minds. They are supported by digital devices and robots. The collaborative production assistant APAS assistant, for instance, supports employees with monotonous and ergonomically challenging tasks – without a safety fence. This human-robot collaboration is made possible by an intelligent safety concept. Thanks to its sensor skin, the APAS assistant recognizes its human colleagues without touching them and stops before a collision happens. Once the employee has left the immediate vicinity, the robot independently resumes its work exactly where it stopped before. This interaction of human and machine leads to higher efficiency, and sustainable optimization of the overall productivity, since employees can concentrate on more complex tasks.

ActiveShuttle – the Delivery Guy

Robots also support with internal transport processes. They drive through the factory and, for instance, transport material cases from storage to the production station. With the ActiveShuttle, Bosch Rexroth presents a concept for an intelligent, driverless transport system that automates the internal flow of material and goods. The integrated lifting platform automatically unloads goods in the logistics and manufacturing areas. Cyclical transport or a consumption-based material supply can also be realized with ActiveShuttle.

XDK – the Messenger

The universally programmable IoT multisensor XDK (Cross Domain Development Kit) is the “midwife“ for companies, who want to develop their own applications quickly and flexibly. In a compact box, the XDK combines a variety of MEMS sensors, for instance to measure acceleration, rotation angle, humidity, air pressure or temperature, with a powerful processor for the analysis, processing and transmission of the sensor data. Be it for predictive maintenance, monitoring or retrofitting: the XDK can be deployed universally; the programming language XDK Mita facilitates programming.

Apart from the avatars, Bosch is exhibiting the following highlights:

Foosball: learning by playing thanks to artificial intelligence

Table soccer has to be learned. To do so, we absorb and digest information with our senses, in this case the eyes. With the help of our brain, we learn systematically how to hold, play or pass the ball with the right force at the right time. Artificial intelligence (AI) works according to the same principle: instead of the brain, software processes the information with algorithms; cameras and sensors replace our senses. The soccer table, also called foosball or KI-cker (KI is the German abbreviation for artificial intelligence), teaches itself and optimizes its soccer abilities with every new co-player. Industrial applications such as robots or autonomous vehicles can also learn numerous tasks and optimize their performance thanks to AI. Their biggest advantage: even after the umpteenth try, they will not be frustrated.

Smart Cab for connected farming

Smart Cab, co-developed by Bosch as a member of the CAB concept cluster, turns agricultural vehicles into connected control centres in the field. All components – vehicles, cameras and drones alike – can interact with each other. Via the cloud, camera drones send detailed pictures of the condition of crops to the driver’s cab, and operators are warned by the object recognition camera about living obstacles such as deer. Vehicle users can download specific functions from a feature store over the air directly to the machines. Depending on the weather or soil conditions, for example, the nozzle settings can be adjusted.

Nexeed – new Industry 4.0 software for production and logistics

Connecting the entire value stream

Hardware applications need innovative software solutions running in the background to provide the necessary connectivity. At Hannover Messe, Bosch is presenting its Nexeed new software portfolio, which pools Bosch software and services for production and logistics. The Nexeed solutions make day-to-day work easier for employees and optimize production and logistics processes in terms of transparency, agility, cost, quality and time. The portfolio ranges from the sensor, over machine automation to the cloud. Nexeed solutions can be combined to connect individual lines, entire plants and plant networks, as well as their intralogistics and external goods flow.

Systematic production improvement

The Nexeed Production Performance Manager, for example, ensures systematic improvement of production by helping employees with decision making. For this purpose, the software collects and harmonizes production and machine data from many different sources and “translates” them into a common language. Subject-specific functions like the Ticket Manager, which was developed for the lighting company Osram, make it possible for the employees to complete their tasks faster and more purposeful. Using an app, employees are informed about the status of their more than 80 connected machines at all times. Upcoming tasks such as maintenance work or subsequent material deliveries are displayed, evaluated and assigned to the employee with the appropriate qualification.

Opening the data treasure chest with Data Analytics

The production process produces a large quantity of data of various types – the most important raw material of Industry 4.0. With Nexeed Data Analytics, this data can be used intelligently to identify new optimization potential. Customers do not have to deal with Data Analytics themselves; this task is entirely up to the Bosch experts. They gain important insights from product, process and machine data, which can be used to achieve improvements regarding quality, cost and delivery performance. Customers receive an individual service from the first data analysis to comprehensive prediction models.

Intralogistics en route to the digital age

Compared to modern production, the intralogistics sector is lagging behind regarding connectivity. Nexeed Intralogistics Execution deals with the three big challenges: keeping an eye on the vehicle fleet, optimizing material storage and designing transport routes dynamically. Information on all intralogistics processes are available in real-time. By unifying relevant data from different sources – for example RFID in the internal supermarket, forklift localisation and inventory information – the solution not only helps logistics specialist with the daily work, but also allows long-term planning.

Seamless transparency throughout the supply chain

These days frequent travellers can easily share information about their whereabouts. With Nexeed Track and Trace, Bosch has developed a logistics solution that enables the freight to record a digital travel diary. The software not only shares the current location, but also regularly sends information about temperature, vibration and humidity to the cloud via wireless sensors and gateways. This way, supply chains can be traced and permanently optimized. The international freight forwarding and logistics company Panalpina makes use of these benefits. They use Nexeed Track and Trace for a transparent supply chain – not only on the road, but also in the air. On the first test route between Germany and the recipient plant in the U.S, each package was equipped with a sensor. It records regularly relevant parameters such as vibrations. At each gateway, for instance when unloading the truck at the terminal or loading the airplane on the runway, data and the location of the time-sensitive goods are transmitted to the cloud. The Panalpina sees whether the goods have been loaded into the airplane and how they are doing.

Video: https://youtu.be/gqCNU87dgz4

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

 

Saving up to 90% time with PLC-free programming and commissioning

Guest contributor: Frank Kaufmann, Bosch Rexroth

However efficient PLC programming for complex tasks may be, it is often relatively time-consuming for simple and moderately complex automation solutions. In light of scarce internal resources, machine manufacturers are looking for ways to speed up engineering and shorten delivery times. A new solution is Sequential Motion Control SMC, a virtually universal technology function for IndraDrive servo drives. It reduces users’ programming and commissioning work by up to 90 percent compared to PLC programming.

Career portals clearly show the lack of skilled labor: in Germany alone, there are more than ten thousand vacancies for PLC programming and commissioning specialists. The situation is no better in other countries. The lack of skilled labor not only lengthens the time to market for new machines – it also makes it more difficult to develop lucrative services, for example adapting installed stations to new tasks.

If orders are delayed owing to capacity bottlenecks, this annoys customers. This makes it all the more important to come up with an alternative to complex, time-consuming PLC programming. This is where drive-based Sequential Motion Control SMC comes in. It uses the intelligence of servo drives for applications with up to six axes yet requires no external motion control system. The integrated motion control system, on-board I/Os and expandable I/O cards reduce hardware costs and make system integration easier.

1 DC-AE_Bild1_SMC_PAN3237_201810_mn

Ten automation solutions in the time it would take for one

Lean engineering offers particularly exciting opportunities for machine manufacturers as it allows them to put in place up to ten automation solutions in the time it would normally take for one. As a result, they can step up the pace instantly and ultimately increase their turnover. Independent investigations and empirical findings show that the PLC programming and commissioning work for a flying cutter takes slightly more than a man-week. With SMC, the same result can be achieved in just four man-hours.

With a single command, SMC controls complete motion sequences which the user arranges one after another. These sequences are based on a wealth of automation experience in areas ranging from wood processing to the packaging industry and can cope with simple and moderately complex tasks in a virtually universal manner. With pre-defined commands, users can achieve independent positioning axes, axis and master axis couplings, synchronous axis operation, cam profile applications and sequential movements. Applications range from handling systems, processing stations and test stands to flying cut-off. A wide range of special functions are available: With just a few lines, users can activate head cutting, parts movements, maximum lifting routines, reverse optimization, short length processing and other functions.

2 DC-AE_Bild2_MonitorMann_PSO2684_201810_mn

90 percent faster engineering – with SMC for IndraDrive, axis couplings, synchronous axes and sequential motion sequences can be achieved much more quickly.

3 DC-AE_Bild3_SMC_Screen_PSO3238_201810_mn

With SMC, users can achieve independent positioning axes, axis and master axis couplings, synchronous axis operation, cam disc applications and sequential movements with pre-defined commands.

Eight commands replace 200 lines of PLC code

When engineering, routine tasks such as defining operating modes, diagnostics and error handling take up significant amounts of time. Up until now, these tasks which are often unpopular accounted for up to two thirds of overall programming time although they barely contribute towards the specific solution. With the SMC option, the drives are pre-configured in the factory, thus eliminating these routine tasks. Thanks to this pre-configuration, users can begin task programming and commissioning straight away.

Sequential programming also helps less experienced technicians to create automation solutions geared to particular applications quickly. A practical example: in an open PLC such as the IEC 61131-3, the programming code for a pair of flying shears is more than 200 lines long. With SMC, the user arranges eight commands one after another and then only needs to optimize the processing procedure. Users merely need to learn around 70 commands. They include complete applications and command up to six axes at the same time with one instruction. Users issue step and motion control commands, use closed-loop force and torque controls and query I/Os.

4 DC-AE_Bild4_SMC_Screen_PSO3238_201810_mn

PLC code with just eight commands reduced to 14 lines. With SMC, programming and commissioning a pair of flying shears takes less than half a day.

Optimizing variables directly

SMC includes a manual mode for setting up and referencing axes, a parameterization mode and an automatic mode for working through the programs. In automatic mode, the solutions can control up to four tasks in parallel. At the same time, a cyclic task allows statuses and diagnoses to be called up at any time. Users can therefore observe and optimize variables while the program is running.

Quick solutions for emerging markets

The level of automation in China and other emerging markets is increasing very quickly at the moment. At the same time, there is a lack of programmers with an expert knowledge of PLC in these countries. With online help, watch-listen and tools for debugging or program management, the free SMC Editor helps even technicians with little experience. If necessary, users can use ready-made templates for visualization or create their own.

Owing to increasingly short product life cycles, rapid automation is also becoming more important in mature markets. Concepts such as Bosch Rexroth’s factory of the future are highly flexible and allow the production of very small quantities – even down to a batch size of 1. In the future, end users will be able to adapt their production lines flexibly according to orders at very short intervals and will require new motion sequences and additional processing stations at short notice.

The new processing stations must also fit into connected production lines. As a result, an open system for sharing data and information with other machines and higher-level IT systems is a must. The Sercos automation bus allows real-time cross-communication – an important requirement when it comes to precise synchronization with other process movements. Via software, the user selects in the multi-Ethernet interface one of the common protocols such as Sercos, PROFINET IO, EtherNet/IP and EtherCAT as well as the safety protocols CIP Safety on Sercos, Fail Safe over EtherCat and PROFIsafe on PROFINET.

Another task which only very experienced programmers were able to cope with relates to machine safety. Rexroth’s SafeMotion reduces the time required with certified safety functions. As a result, users do not need any additional safety control system in order to meet the requirements and standards of the Machinery Directive.

Increasing turnover with existing resources

The lack of skilled labor will remain a problem for the global mechanical engineering sector in the long term. SMC is a practically oriented approach for simplifying programming and commissioning. Machine manufacturers can therefore significantly increase the number of automation solutions that they supply even without additional PLC programmers. At the same time, the available specialists can concentrate on automating more complex tasks and here too reduce the time to market considerably.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Economical and intelligent: Handling solutions re-conceived

Guest contributor: Andreas Gryglewski, Bosch Rexroth

The market for handling and robotic solutions is highly price-driven, yet still leaves room for disruptive ideas. Bosch Rexroth provides proof of this with an advanced solution package for Cartesian kinematics. It combines an economical industrial controller with state-of-the-art web technology and assured instruction via a standard tablet. The result: minimum investment costs and maximum efficiency – before and during operation.

Manufacturers of handling solutions for loading and unloading face fierce competition. The volume market demands cost-optimized, rugged and user-friendly solutions that optimally fulfill all requirements in terms of accuracy and cycle times. In addition, users expect quick commissioning with as little programming, instruction and training expenditures as possible. A high degree of productivity and flexibility is also required for the operational phase in order to reduce downtime and so that format or process changes can be more quickly implemented.

All of these requirements are addressed by Bosch Rexroth with a particularly economical solution package for Cartesian kinematics that combines a high-performance motion controller with state-of-the-art web technologies and innovative value-added features. The automation experts make the solution package even more economical with an especially clever idea: users can perform the setup and assured teaching-in on any standard commercially available tablet.

Industrial control, web technology, consumer tablets

In its solution package for Cartesian kinematics, Bosch Rexroth combines a powerful motion controller with modern web technologies and innovative value-added features.

The disruptive solution approach for Cartesian handling from Bosch Rexroth is particularly suitable for machinery manufacturers and end users who want to implement flexibly and reliably adaptable pick-and-place tasks in a short time and at a low cost. Examples include the loading and unloading of injection-molded parts, the sorting of workpieces, or a wide range of intralogistics applications. Bosch Rexroth combines its proven industrial controller with a webserver and a bracket for a typical standard tablet, by means of which the user can visualize the connected handling solution and – graphically-supported – program, teach-in and adjust it as needed. The solution package is comprised of other basic components such as compact servo motors and drives for the kinematics movement, as well as a safety controller for connecting to the tablet bracket for safe teaching-in. From a single source, Bosch Rexroth also optionally offers the mechanical equipment, includinglinear axes with a belt or ball-screw drive and grabbers.

The utmost in connectivity and IT security

In its new handling solution, Bosch Rexroth placed special emphasis on the two key properties of i4.0 –connectivity and IT security. While the optional IoT Gateway ensures the horizontal and vertical networking, the security router with a newly developed IoT firewall, which is also optional, guarantees secure communication between the tablet and controller. Consequently, unauthorized persons can neither log into the controller nor can a virus attack the controller or spread throughout a company’s IT network.

Bild_2_21263-1200x800

Thanks to the newly developed solution packages, handling systems from Bosch Rexroth can be more quickly commissioned, easily programmed, and taught most economically using standard tablets.

Easy commissioning without parameterization

One of the numerous unique features is the operating concept for the handling solution: Immediately after a servo motor is connected with a drive, the latter reads out the stored parameter set from the feedback memory and thus already has all the characteristic data of the mechanical equipment. The result: a considerable time savings and prevention of errors during commissioning, because the user no longer has to manually enter up to 70 parameters. When Rexroth mechanical equipment is ordered in the future, the parameters will be stored in the feedback memory of the motor while still in the plant. If the user puts his own mechanical equipment into operation; the associated parameter file can also be stored in the feedback memory and is efficiently read into the drive upon connecting.

Safe teaching-in using a standard tablet

The disruptive character of the new handling solution becomes clear during setup, which can be performed wirelessly with almost any consumer tablet. It is expeditiously fastened in a bracket especially developed by Bosch Rexroth for teaching-in, which can be adjusted to the respective size and securely encloses the mobile device. On the top left is a combination emergency stop and enabling button that makes reliable and comfortable teaching-in possible for the user. While the left hand holds the tablet and can press the red button, the right hand is free for other operational tasks. The visualization and operation of the handling system is web-based and applies the HTML5 standard, hence is independent of the tablet OS. An optional security router with an integrated firewall provides for IT security.

Programming without programming knowledge

Bosch Rexroth also made the process programming, which precedes the teaching-in sequence, as uncomplicated as possible. Because it uses the graphical programming language Google Blockly, as is the case with the tablet, no programming skills in conventional terms are required. In order to move an axis from point A to point B, for example, only the start and end positions need to be specified, and a line to connect them with each other. The grabbers are also opened or closed by means of graphical elements. Thanks to variables, logical expressions and loops, it is possible to easily specify and clearly represent various processes, also complex ones if necessary.

Features for increasing productivity and quality

Positively contributing to the performance of an especially economical operating phase of the new handling solution are its versatile functions and expansion options. These ultimately also afford the user a high degree of flexibility for changes in process or format. For example, the Active vibration damping function, which provides greater product quality in combination with a sensor, or initiates the exact countermovements in the open-loop process in the linear module in order to prevent undesirable vibrations or to move sensitive products. Thus, for instance, the utmost in accuracy can be achieved when loading and unloading using the grabber sparing the mechanical equipment for a longer service life.

Preventive maintenance and IoT integration

Preventive maintenance can also be cost-efficiently realized in combined usage with the optional IoT Gateway. In order to collect data for analysis and evaluation of the service life, the motor decoder can also be used as an intelligent sensor. If the motor revolutions are converted into linear movements, the timing for lubrication intervals or the replacement of components can be derived, for example. Communication standards such as OPC UA can provide for easy integration into customer-specific IoT systems as needed.

Economical in every way

The solution package is especially suited for pick-and-place tasks that must be quickly and flexibly adaptable – such as for the loading and unloading of injection-molded parts, the sorting of workpieces, or for various intralogistics applications.

 

With the new solution package, Bosch Rexroth introduces a fresh impetus into the competitive market for Cartesian handling. Automation expertise, modern web and IoT technologies, and productivity-enhancing features are combined in a rugged and practical solution concept that takes into account current and future market requirements, and which generates disruptive energy. Consequently, machinery manufacturers and end users find quick and very economical way to implement a reliable, efficient and flexible handling solution that can be commissioned, taught, and adapted to current requirements without any significant knowledge of programming and parameterization.

Innovative approaches of the new handling system:

  • A comprehensive economic package comprising industrial controller, servo motor, drives, security zone module and teaching-in bracket for consumer tablets
  • Maximum security through a router with firewall (optional)
  • Minimal total cost of ownership thanks to:
    • Commissioning without the need for parameterization: Drives automatically read stored mechanical parameters when connected with a motor
    • Device-independent visualization and operation (HTML5)
    • Safe teaching-in bracket for consumer tablets
    • Simplified process flow design without programming knowledge, thanks to Google Blockly
  • Added value functions for productivity and quality – for example vibration absorption
  • Prepared for data tracking for preventive maintenance
  • Easy integration into IoT systems through open interfaces such as OPC UA

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Innovative automation solutions for additive manufacturing 2.0

Guest contributor: Peter Berens, Bosch Rexroth

Additive manufacturing is a growth market – sales worth tens of billions of euros are expected by 2020. However, innovative automation solutions are needed if this disruptive technology is to achieve a breakthrough and make the leap from prototype construction and toolmaking to industrial mass production.

If machine manufacturers want to achieve the productivity needed for mass production, they need to reduce the amount of manual work involved, the reject rate and the quality assurance outlay and successfully integrate the machines into the production line. Both challenges can be met through high-performance, intelligent and connective automation.

IoT as a key technology

In the factory of the future, AM machines will be connected horizontally and vertically to higher-level and neighboring IT systems. When it comes to the industrial Internet of things, Bosch Rexroth relies on open i4.0 standards such as OPC UA. With full server/client functionality, processes, cycle times and energy consumption can be evaluated in real time and optimized to achieve better productivity and quality. In conjunction with intelligent algorithms in drive and control technology, Bosch Rexroth also carries out predictive maintenance.

3D printing and the factory of the future

Thanks to decentralized intelligence, drive technology without control cabinets and open standards, the next generation of AM machines is ready for the factory of the future. Wireless communication and modular production lines increase flexibility while reducing set-up times. As a result, the factory layout can be geared to current and future requirements. The next logical step is the decentralization of the control system which will then receive its programs as necessary from the cloud.

What the hardware must be capable of

Whether it be metal, plastic or ceramic: the output in the relevant AM procedure depends very much on the performance of the CNC or motion control system. The shorter the cycle times, the more quickly the NC programs run. The higher the performance, the quicker 3D data can be computed on the CNC and process data collected and processed in real time. The MTX CNC system from Rexroth achieves this with a combination of a high-performance dual core processor and decentralized intelligence allowing fast reaction times. As a result, many additional tasks can be performed by the machine. Planning, programming and the commissioning of all system components take place in a standardized manner via IndraWorks Engineering.

Abbildung_2_Werkstücke-768x257

Software makes all the difference

In order to be able to control the application of additive materials precisely and to influence it easily with process variables, the control software too must be particularly powerful. The MTX system software includes numerous AM-specific CNC functions for this purpose. These include an intelligent temperature control system and a 3D online simulation with collision recognition which automatically visualizes the construction time, positioning and printing head travel. The standardized G code is supported by any slicer software. Integrated NC encoding systems protect manufacturer-specific know-how.

Digitizing the workflow

Another key development area is the digitization of the workflow with typical tasks such as print configuration, job management, machine monitoring including online process modification or controlling intralogistics. Because this is not possible without interfaces to the software programs involved (e.g. CAD/CAM systems or simulation solutions), the MTX CNC system has an open system architecture and the Open Core Interface. As a result, machine operators can easily integrate their workflows. In a pre-production context, there are numerous benefits including material simulations or the certification of quality-related parameters. The CNC system thus fits seamlessly into simulation environments as “hardware in the loop”.

2Abbildung_3_CNC-System_MTX-768x513

Efficient, intelligent and connective: the MTX CNC system from Rexroth. (Source: Bosch Rexroth AG)

Industrial 3D printing in practice

Norsk Titanium AS demonstrates just how efficient industrial 3D printing can be. The world’s leading provider of additive manufacturing technologies for aerospace-grade titanium established the first additive production facility on an industrial scale. In its Rapid Plasma Deposition™ machines, an MTX system controls not only plasma burners but also ten servo axes for producing components and conveying or handling the titanium wire. The MTX system also takes care of process optimization in real time by evaluating sensors and calculating correction values. Bosch Rexroth contributed to the partnership through the experience that it gained during more than 100 group AM projects along with various system components such as drive controllers, supply units, motors and linear systems including the IMS high-precision integrated measuring system.

The German machine tool manufacturer Weisser presented its Weisser additive manufacturing exhibit for the first time at the EMO 2017 and the Metav 2018. Equipped with an additive friction welding unit (AFW), it allows fine layers of metal to be deposited on metal materials and then precision-machined using metal-cutting techniques. As a result, the final contour is maintained with minimal material use. This technology too benefits from the MTX CNC system whose user interface can be integrated seamlessly into the multi-touch operating panel thanks to the open architecture.

3Abbildung_1_PanelMaschine-768x512

The future will be even simpler

With high-performance and high-connectivity automation solutions, industrial 3D printers will be fast and reliable enough for use in mass production. Open interfaces will help to digitize workflows. IoT connectivity is paving the way for the factory of the future. At the same time, experienced system partners such as Bosch Rexroth who provide not only engineering and application support but also complementary technologies such as decentralized drive or linear technology with integrated sensor systems can help manufacturers to acquire the necessary know-how.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Battery production: Increased capacity through intelligent automation

Guest contributor: Hans Niessen, Business Development Manager Industry Sector Semicon, Electronic Manufacturing and Flat Panel Display at Bosch Rexroth 

Manufacturers of modern energy storage systems are faced with the challenge of developing high-quality batteries offering better performance and marketing them in large numbers in the short term. How can automation help when it comes to producing various models and batch sizes not only quickly and flexibly but also in an economical and environmentally friendly manner?

Electric cars, digital mobile devices, decentralized energy storage systems for wind or solar power: in the coming decade, demand for battery cells will increase dramatically. According to the Fraunhofer ISI’s recently published “Energy storage roadmap”, cell production capacities at European plants will have to increase to several hundred GWh by 2030 in order to meet demand in Europe. Manufacturers are in a race against time and must find ways of getting newly developed battery solutions onto the market in large quantities much more quickly.

Mass production with a high level of flexibility

Because the development of more powerful energy storage systems follows short evolution cycles, it must also be possible to adapt production processes quickly. Process and product improvements identified in the laboratory should be adopted in production immediately. How do the various automation partners cope with these requirements? How do they intend to reduce operating costs while ensuring optimum material and product quality and at the same time taking into account important sector issues such as energy efficiency and the use of resources? To achieve these aims in a convincing manner, they must look at all sub-processes involved in battery production – something that requires a broad knowledge of automation given their specific requirements.

22710-1200x719

Layout of a battery production facility. Each individual step requires a great deal of highly efficient, flexible automation technology.

High-speed coating of electrodes…

Rechargeable battery cells are manufactured in a variety of forms. Regardless of whether they are cylindrical, prismatic or in the form of a pouch cell, each new generation has specific production and automation requirements. In an effort to achieve greater capacity in an even smaller space, the electrode foils wrapped or folded inside them are becoming increasingly thin and their coating increasingly thick. Highly precise web handling is needed in order to achieve the process speed needed for mass production but without impairing quality. This in turn requires specific functions such as those provided by the Motion Logic Control (MLC) control software from Bosch Rexroth with its libraries. The system is based on the embedded control system XM and allows motion tasks with over 200 distributed axes with sub-micrometer accuracy. Easily parameterizable control algorithms such as speed, force and travel control together with synchronization allow quick engineering with minimal programming work.

22712-1200x801

Coating places huge demands on the production system as it has a significant influence over the properties, operating life and energy density of a battery.

… and structuring

As part of the high-precision roll-to-roll process, the two electrodes along with two separators are combined to produce a sandwich structure and, in the case of cylindrical batteries, are formed into a roll. For prismatic cells, they must be accurately stamped or cut using a laser and then stacked flat or folded in the form of a Z. In order to manufacture pouch cells, the electrode sections must be accurately cut, stacked and then welded. Because the stacking and welding are relatively time-consuming processes, they often lead to inconvenient delays in the overall process.

Production steps for various cell types requiring highly efficient roll-to-roll processes and flexible transport systems to prevent bottlenecks.

Flexible transport prevents bottlenecks

In order to prevent bottlenecks when manufacturing batteries, displays and other electronic products, Bosch Rexroth has developed the Flexible Transport System FTS. It is dimensioned according to the mass to be transported and transports the individual workpiece carriers independently of one another from station to station. As a result, maximum acceleration is possible at all times. The multi-product system can take on exact positioning tasks at the same time. Thanks to a more flexible layout, more time-consuming processes can be carried out in parallel, thus doubling productivity. With these new possibilities, the production of notebook and smartphone batteries could be increased by almost 200 percent without impairing the time to market.

With the Flexible Transport System (FTS), Bosch Rexroth prevents typical bottlenecks in battery, display and electronic production.

Producing battery packs quickly and stably

Before it is closed and sealed, the battery needs to be filled with electrolyte. It should be as full as possible so that only minimal spaces remain in the separator foam. Because the liquid is toxic, the process must be completed quickly in order to avoid contaminating the environment. The individual battery cells are then combined to form modules. Automated systems are also used to produce the housings for the battery packs in large numbers and with minimal waste. Solutions such as the IoT Gateway from Bosch Rexroth which collect sensor and control data and passes them on to cloud platforms or on-premises solutions for analysis and evaluation are ideal for monitoring process stability and making continual improvements.

Highly efficient, flexible module production

A typical battery pack is made up of several cells and a management/cooling system. In order for manufacturers to adapt their existing production lines quickly in the event of product changes or to react to changing batch sizes, they should standardize automation and handling and at the same time ensure adequate flexibility. Once again, the flexible FTS transport system is an option here. Thanks to its scalability for products weighing anything from 1 g to 2,000 kg, it is suitable even for large vehicle batteries.

Green processes: efficient energy use

As an automation provider with expertise in a range of technologies and the ability to collect and analyze data from machines and systems quickly and easily, Bosch Rexroth helps machine manufacturers when it comes to green processes too. When used in battery production, the Rexroth 4EE (Rexroth for Energy Efficiency) system helps to increase productivity while conserving resources, cutting emissions and reducing operating costs. This is possible thanks to four levers which work throughout the life cycle:

RD08503_4EE_Grafik_Seite7-1200x826

Rexroth 4EE: The holistic view of machines and systems over their entire life cycle allows energy consumption, emissions and operating costs to be reduced sustainably while increasing productivity.

Productivity requirements demand full expertise

In spite of the various challenges in battery production, the situation from the point of view of an experienced automation partner is not new. The experts from Bosch Rexroth have already helped companies in the solar, photovoltaic and semiconductor industries to cope with the changes in their sectors and can therefore offer users and machine manufacturers competent advice. Over 20 years’ expertise from the printing industry has gone into the company’s roll-to-roll solutions. Open Core Engineering which allows the simulation and virtual commissioning of new automation solutions also plays a key role in reducing the time to market. Bosch Rexroth relies on open standards such as OPC UA in order to continually improve processes and provide condition-based maintenance. With innovative system solutions such as the FTS, global service and an international network of machine manufacturers, the basis for quick and lasting success in the market is already in place.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

5 Ways Flexible Manufacturing has Never Been Easier

Guest Contributor: Tom Rosenberg, Balluff

Flexible manufacturing has never been easier or more cost effective to implement, even down to lot-size-one, now that IO-Link has become an accepted standard. Fixed control and buried information is no longer acceptable. Driven by the needs of IIoT and Industry 4.0, IO-Link provides the additional data that unlocks the flexibility in modern automation equipment, and it’s here now!  As evidence, here are the top five examples of IO-Link enabled flexibility:

#5. Quick Change Tooling: The technology of inductive coupling connects standard IO-Link devices through an airgap. Change parts and End of Arm (EOA) tooling can quickly and reliably be changed and verified while maintaining connection with sensors and pneumatic valves. This is really cool technology…power through the air!

Image1

 

#4. On-the-fly Sensors Programming: Many sensor applications require new settings when the target changes, and the targets seem to always change. IO-Link enables this at minimal cost and very little time investment. It’s just built in.

Image 2

 

#3. Flexible Indicator Lights: Detailed communication with the operators no long requires a traditional HMI. In our flexible world, information such as variable process data, timing indication, machine status, run states and change over verification can be displayed at the point of use. This represents endless creativity possibilities.

Powertrain visualisieren

 

#2. Low cost RFID: Radio Frequency Identification (RFID) has been around for a while. But with the cost point of IO-Link, the applications have been rapidly climbing. From traditional manufacturing pallets to change-part tracking, the ease and cost effectiveness of RFID is at a record level. If you have ever thought about RFID, now is the time.

7_1_Produktionsdaten_Dokumentieren

 

#1. Move Away from Discrete to Continuously Variable Sensors: Moving from discrete, on-off sensors to continuously variable sensors (like analog but better) opens up tremendous flexibility. This eliminates multiple discrete sensors or re-positioning of sensors. One sensor can handle multiple types and sizes of products with no cost penalty. IO-Link makes this more economical than traditional analog with much more information available. This could be the best technology shift since the move to Ethernet based I/O networks.

8_1_induktiver_Abstand

So #1 was the move to Continuously Variable sensors using IO-Link. But the term, “Continuously Variable” doesn’t just roll off the tongue. We have discrete and analog sensors, but what should we call these sensors? Let me know your thoughts!

To learn more about RFID and IO-Link technology, visit www.balluff.com.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.