Industry 4.0

5 HYDRAULICS MYTHS

Guest Contributor: Dr. Steffen Haack, Bosch Rexroth

br_hydrolicmyths_hero_dec19.jpgNo drive technology is more efficient, compact and robust than hydraulics when dealing with forces in excess of 600 kN. So why is it that the importance of hydraulics is often overlooked in the training and development of our young engineers?

In the modern manufacturing setting, movement is everything along with the resulting data. Little thought is given to hydraulic technology, that is until drive physics comes into play. This is when hydraulic technology comes into its own in managing large forces and delivering robust performance.

Here’s a connected hydraulics ‘Myth Buster’ that demonstrates how the latest smart hydraulics are more versatile and cost-effective than you ever imagined.

THE MYTH: Installation is complex

BUSTED: Designers are no longer required to develop an in-depth knowledge of fluid mechanics and technology and increasingly look for plug & produce modules. These ready-to-install modules simply need an electrical current and a connection to the control communication.

THE MYTH: Commissioning takes time

BUSTED: Our smart, connected hydraulics are now commissioned with the same engineering tools as electric drives and control systems. Functions previously carried out hydromechanically are handled by the latest drive software. There are even software assistants available to guide technicians through the commissioning process and suggest suitable parameters.

THE MYTH: Hydraulics waste energy

BUSTED: There’s a preconception that hydraulics are more energy-intensive than other technologies, but things have changed dramatically. Variable-speed pump drives generate the flow in line with demand and reduce speeds accordingly under partial load conditions. Compared to constantly driven pumps, they reduce power consumption by up to 80 percent – a level consistent with that of electric drives of the same size.

THE MYTH: Hydraulics aren’t IoT ready

BUSTED: Smart hydraulics are a well-established part of IoT in production. Analog valves can be made digitally visible cost-effectively thanks to IO-Link and exchange data available through the control system. Smart valves, with their own control electronics and state of the art field bus connection, are as convenient to use as electric drives.

THE MYTH: Hydraulics are high maintenance

BUSTED: Hydraulics offer a distinct advantage when monitoring operating states and deducing possible wear and expected life cycle. With a few pieces of sensor data, such as pressure differential, oil temperature, optically measured contamination or pressure increase over time, software can assess the health of the system.

This myth busting technology is included in our latest generation of hydraulic power units, allowing young designers and businesses to benefit from all the advantages of our modern, connected innovations.

 

CMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Why RFID is the VIP of 2019

The “most popular” annual lists don’t usually come out until the end of the year, but I think it is worth mentioning now three applications that have gained substantial momentum this year. With the Smart Factory concept being driven around the globe, RFID has emerged from the shadows and taken its place in the spotlight. The demand for a larger amount of data, more security, and increased visibility into the production process has launched RFID into a leading role when it comes to automation.

Machine Access Control

When considering RFID being utilized for access control, they think about readers located near doorways either outside the building or within the plant. While those readers operate much like the industrial readers, they typically cannot communicate over an industrial communication protocol like Ethernet/IP, Profinet, or IO-Link.  With an industrial access control reader one can limit access to HMIs, PLCs, and various control systems by verifying the user and allowing access to the appropriate controls.  This extra layer of security also ensures operator accountability by identifying the user.

Machine Tool ID

RFID has been used in machining centers for decades. However, it was used mostly in larger scale operations where there were acres of machines and hundreds of tools. Today it’s being used in shops with as few as one machine. The ROI is dependent on the number of tool changes in a shift; not necessarily just the number of machines and the number of tools in the building. The greater the number of tool changes, the greater the risk of data input errors, tool breakage, and even a crash.

Content verification

Since RFID is capable of reading through cardboard and plastic, it is commonly used to verify the contents of a container. Tags are fixed to the critical items in the box, like a battery pack or bag of hardware, and passed through a reader to verify their presence. If, in this case, two tags are not read at the final station then the box can be opened and supplied with the missing part before it ships. This prevents an overload on aftersales support and ensures customers get what they ordered.

While RFID is still widely used to address Work in Process (WIP), asset tracking, and logistics applications, the number of alternative applications involving RFID has skyrocketed due to an increase in demand for actionable data.  Manufacturing organizations around the world have standardized on RFID as a solution in cases where accountability, reliability and quality are critical.

 

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Hydraulic Valves Will Benefit From Connectivity

Guest contributor, Jeroen Brands, Bosch Rexroth

Hydraulic valves: Directional valve with integrated digital axis controller

Hydraulic valves: Directional valve with integrated digital axis controller

What are the current market requirements for hydraulic valves?

We are currently experiencing a transition from classic, analogous hydraulics to connectable digital fluid technology. European machine manufacturers in particular are increasingly digitizing their machine designs and expect that hydraulics can be seamlessly embedded into these connected environments. This means that regarding the level of automation, hydraulics are on a par with electromechanical drives. One of the decisive features in this respect is the seamless integration of intelligent hydraulic valves into different automation topologies via open standards such as multiple Ethernet interfaces.

Which new technical possibilities are available to meet these requirements?

Smart single-axis controllers are already remotely regulating hydraulic motions in a closed control loop. In addition, a powerful motion control is integrated into the on-board electronics of the valve. It performs the target-actual comparison on site and regulates accurately to a few micrometers. The control quality of the system is exclusively determined by the resolution of the measurement systems. These motion controls without control cabinet are increasingly used in saw lines, paper mills and machine tools. In addition, there are smart variable speed pump drives and smart pump controls. They provide completely new possibilities of replacing the throttle controls, which were predominantly used up to now, by more energy-efficient displacement controls. In this way, functions which were previously executed by valves are relocated to the software.

What about the integration of sensor technology into hydraulic valves?

The mass production of sensors for the automotive or the consumer products industry has significantly reduced the costs. Now, sensors are increasingly used in hydraulics. In our opinion, the integration of sensor technology of this kind into existing valve housings is the next step. Regarding condition monitoring, sensors could collect information on fluid quality, temperature, vibrations and performed switching cycles. Via deep learning algorithms, users can then detect wear before it causes malfunction.

Which other possibilities of mechanization does a valve provide?

The degree of freedom regarding connection geometries is already limited by standard requirements. The hydraulics industry discussed the topic of digital hydraulics in great depth some time ago. The idea was and is to control flows in a “stepped” or “clocked” way using single- or multi-bit strategies. In certain applications, this can constitute an advantage compared to continuously variable technology.

Which other innovations in hydraulic valves are relevant in your company?

It is no longer a question whether hydraulic valve technology will benefit from connectivity or not. The only question is when. The current discussions around Industry 4.0 clearly show how important it is to define all required functions and functionalities. Only if mechanisms and sensor technology are standardized across different manufacturers will active connectivity and communication be possible. Even in the future, not every hydraulic-mechanical pressure valve will have digital electronics on board or be connected to a control system or other valves. An imprinted QR code with information on the manufacturer’s settings, functional descriptions or information on replacement seals are a first step towards connectivity. In the area of new materials and production technologies, Rexroth has many innovations in the pipeline. 3D printing of cores for cast housings or direct printing considerably lowers energy consumption during the operation of valves. While the divisibility of the core mold had to be taken into account in the design of the core, this is no longer necessary today thanks to core printing. This means that we can use other channel designs which allow for lower pressure losses and improve energy consumption. For a valve with a flow of 10,000 l/min, the reduction of flow resistance by 10 to 20 percent significantly reduces the operating expenses.

Pressure transducer for hydraulic applications

How do these trends affect your products?

With the IAC (integrated axis controller) valves, Bosch Rexroth offers motion control without control cabinet which is completely integrated into valve electronics. It can be fully connected via open interfaces. The same applies to servo-hydraulic axes with their own fluid circuit. In these ready-to-mount axes, pump, valves and cylinders form an assembly to which the machine manufacturer only has to connect power supply and control communication. They use the same commissioning tools and user interfaces which means that all drive technologies provide the same look and feel. Classic servo valves, however, can also be improved further. New plug-in amplifiers with pulse width modulation for on/off valves by Rexroth reduce the surface temperature of the connectors by more than 80 degrees to only 50 degrees. This is particularly interesting for saw lines where easily inflammable sawdust constitutes an explosion hazard.

Outlook: How will valve technology change in the next 10 years?

In 10 years, valves will allow for easier project planning, more comfortable commissioning and more efficient operation and will provide more information before a service case. If service is required, the valve may already have ordered its spare parts.

 

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Boost Connectivity with Non-Contact Couplings

Guest contributor, Shishir Rege, Balluff

In press shops or stamping plants, downtime can easily cost thousands of dollars in productivity. This is especially true in the progressive stamping process where the cost of downtime is a lot higher as the entire automated stamping line is brought to a halt.

BIC presse detail 231013

Many strides have been made in modern stamping plants over the years to improve productivity and reduce the downtime. This has been led by implementing lean philosophies and adding error proofing systems to the processes. In-die-sensing is a great example, where a few inductive or photo-eye sensors are added to the die or mold to ensure parts are seated well and that the right die is in the right place and in the right press. In-die sensing almost eliminated common mistakes that caused die or mold damages or press damages by stamping on multiple parts or wrong parts.

In almost all of these cases, when the die or mold is replaced, the operator must connect the on-board sensors, typically with a multi-pin Harting connector or something similar to have the quick-connect ability. Unfortunately, often when the die or mold is pulled out of the press, operators forget to disconnect the connector. The shear force excreted by the movement of removing the die rips off the connector housing. This leads to an unplanned downtime and could take roughly 3-5 hours to get back to running the system.

image

Another challenge with the multi-conductor connectors is that over-time, due to repeated changeouts, the pins in the connectors may break causing intermittent false trips or wrong die identification. This can lead to serious damages to the system.

Both challenges can be solved easily with the use of a non-contact coupling solution. The non-contact coupling, also known as an inductive coupling solution, is where one side of the connectors called “Base” and the other side called “Remote” exchange power and signals across an air-gap. The technology has been around for a long time and has been applied in the industrial automation space for more than a decade primarily in tool changing applications or indexing tables as a replacement for slip-rings. For more information on inductive coupling here are a few blogs (1) Inductive Coupling – Simple Concept for Complex Automation Part 1,  (2) Inductive Coupling – Simple Concept for Complex Automation Part 2

For press automation, the “Base” side can be affixed to the press and the “Remote” side can be mounted on a die or mold, in such a way that when the die is placed properly, the two sides of the coupler can be in the close proximity to each other (within 2-5mm). This solution can power the sensors in the die and can help transfer up to 12 signals. Or, with IO-Link based inductive coupling, more flexibility and smarts can be added to the die. We will discuss IO-Link based inductive coupling for press automation in an upcoming blog.

Some advantages of inductive coupling over the connectorized solution:

  • Since there are no pins or mechanical parts, inductive coupling is a practically maintenance-free solution
  • Additional LEDs on the couplers to indicate in-zone and power status help with quick troubleshooting, compared to figuring out which pins are bad or what is wrong with the sensors.
  • Inductive couplers are typically IP67 rated, so water ingress, dust, oil, or any other environmental factor does not affect the function of the couplers
  • Alignment of the couplers does not have to be perfect if the base and remote are in close proximity. If the press area experiences drastic changes in humidity or temperature, that would not affect the couplers.
  • There are multiple form factors to fit the need of the application.

In short, press automation can gain a productivity boost, by simply changing out the connectors to non-contact ones.

 

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

How Factory Owners Can Avoid Choosing the Wrong Industry 4.0 Technology

Guest Contributor, Exor

This article provides a guide for factory owners and IT managers about the principles of lean manufacturing and the criteria to apply, in order to constantly work at optimizing factory outputs, and source the most cost-effective technology while reducing waste at the same time.

This article covers:

  • ‘No islands of automation’ is now ‘no island without a cloud’
  • What are the main types of benefits offered by technology suppliers?
  • Using Lean Manufacturing as a technology filter
  • How can Industry 4.0 concepts help with Lean Manufacturing?

Many factory owners and manufacturers are faced with the challenge of transforming their factories from Industry 2.0 to Industry 4.0 smart factories in order to optimize operational efficiency and automation and to stay ahead in the competitive manufacturing space. Certain customers may require additional customization of products and faster output times, which factories also have to take into account. A large part of optimization involves leveraging and implementing new technology such as IoT architecture and Industry 4.0 systems while reducing waste. Implementing new technology in a factory can be quite an undertaking, and it is advisable for factory owners and manufacturers to avoid costly technology investments which yield no net benefit to the factory at hand.

‘No islands of automation’ is now ‘no island without a cloud’

During the previous decade, many factory owners moved to automation due to the benefits and gains such as higher accuracy, higher productivity, job scheduling ability and availability that increased mechanization offered. They often heard the phrase and the principle of “no islands of automation” that meant they were to avoid automated sub-systems that were not integrated into the overall factory processes and automation and thus provided no benefit to the larger systems in the factory. The aim was to have complete, integrated production and assembly lines that manufactured products seamlessly and without lag time. Automation in and of itself had a significant effect on the factory floor and factory owners experienced an increase in productivity and a decrease in downtime and lag time.

Now those same factory owners are hearing, “no island without a cloud”, since there is a push from IoT companies to promote cloud-based connectivity and solutions and store all the data the factory at hand is generating, in the cloud. The industrial sector is approaching standard cloud-based solutions with caution since there are concerns about the security of data, cost, bandwidth and latency. Even though the cloud does confer benefits to the Manufacturing Execution System (MES). Newer, emerging approaches are looking at using open standards such as OPC UA to control any machine in real-time and implementing machine to machine communication to reduce data storage requirements. The data is then collected and sent to a fog computer or processed at the edge closer to where the machines actually are located, to reduce the concerns with the standard cloud options such as cost and security.

What are the main types of benefits offered by technology suppliers?

Some of the key functionality related to Industry 4.0 technology that suppliers can provide and factory owners should take into consideration are:

1) Data-Driven Plant Performance Optimization

Data-driven plant performance optimization refers to collecting and using data generated by the factory machinery, sensors, HMIs, PLCs, staff and SCADA systems in order to enhance plant operations and processes. The data cycle for plant optimization involves recording and monitoring data, uploading data, analysis of the uploaded data and the reporting of this data using IoT gateways and IoT architecture in the Industry 4.0 context. This optimization should strive to maintain Overall Equipment Effectiveness (OEE), which is a measure of how effective the plant and its industrial equipment are. A process that receives a 100% OEE score means that it has a high-quality output that is as efficient as possible with no machine downtime.

2) Data-Driven Inventory Optimization

Data-Driven Inventory Optimization refers to the process of using real-time data to manage inventory. For example, consider a construction industry scenario where units of supply are labelled with RFID tags and an IoT system can count them. As soon as the supply units drop below a certain level, the sensors trigger an alarm and more supply units are purchased. Consequently, downtime is avoided and the project is more likely to be completed in the scheduled time frame.

3) Data-Driven Quality Control

Due to the ability of IoT systems to collect and manage big data, the IT provider should provide software that is able to develop quality-control models and profiles based on the data. Therefore, each product can be compared in real-time to these profiles (which were based on thousands or hundreds of thousands of data samples) and either rejected or accepted.

4) A Machine as a Service Business Model

This model allows factory owners to turn their machines into stand-alone income generating streams, in addition to the revenue the machine generates from being part of the internal factory processes and production line. So in this model, a specific machine in the factory can be outsourced to a customer or another company that needs it for a set amount of time, and this customer can, through the IoT platform, receive real-time data about the products or services for which they are using that particular machine. A technology supplier should be able to provide HMIs or other systems that enable this multifunctionality. So the factory should be able to receive data about the internal processes the machine is part of and the company hiring the machine should also be able to receive data about the machine and its outputs relevant to their needs.

5) Human Data Interface

The Human Data Interface refers to the platform used for humans to engage with the data, this could be via calls to a database, an HMI, or even a smartphone. The technology provider at hand should provide an interface that allows personnel to engage with the data and draw insights from it.

6) Predictive Maintenance

Predictive maintenance refers to the use of data generated by a certain machine, in order to predict the chances of failure of that specific machine before the actual failure takes place. The maintenance of the machine then takes place proactively rather than reactively. This reduces downtime significantly.

7) Remote Service

Remote service refers to the ability to remotely monitor or repair machinery. This allows repair and maintenance to take place from anywhere and saves the factory owner the cost of transporting machinery to a repair site to be fixed.

8) Virtual Training and Validation

Virtual training refers to training that is provided in a virtual capacity through the use of AI glasses. So, personnel can access this training and learn more about the factory processes in an online environment. Validation refers to the ability of the IoT system to check that the training received was actually beneficial to the staff and the factory. This is done by using sensors to compare the finished products of the factory before and after the completion of training, in order to see if there is a positive difference. Validation also involves using AI glasses to see if the staff member is actually implementing the training received on the shop floor.

Using Lean Manufacturing as a technology filter

Lean manufacturing is based on the concept of eliminating waste from factory processes while ensuring that the customer or client receives the maximum value. Lean manufacturing looks at optimizing the delivery of products in horizontal value streams that ultimately connect to customers. It is about evaluating what is adding value to the customer versus what is adding waste or is not beneficial to the factory.

It is systematic and there are five main principles involved in lean manufacturing:

  • The first principle involves identifying what value actually means to the customer, which will help the factory estimate how much the customer will be willing to pay for their products and services. If waste is removed, then the customer’s price can be met at the best profit margins for the company.
  • The second principle involves mapping the value stream, which means looking at the flow of input materials required to produce the product in its entirety. Emphasis is of course placed on reducing waste.
  • The third principle looks at removing operational barriers and interruptions to this flow.
  • The fourth principle looks at using a pull system where nothing is bought until there is a demand for it. The pull system is based on effective communication and flexibility.
  • The fifth principle looks at continuously improving and striving for perfection in the process.

Lean manufacturing principles can be beneficial for factory owners since they can be used as a technology filter or criteria in order to ensure that any technology implemented in the factory contributes to the reduction of waste and horizontal value streams. The technology in other words should contribute to the reduction of waste, the reduction in standing inventory, increased factory outputs, decreased production costs, and increased labour productivity.

How can Industry 4.0 concepts help with Lean Manufacturing?

…with Data-Driven Plant Performance

Data-Driven Plant Performance as discussed above refers to the use of data in real-time to increase production. This happens simultaneously while using the data to identify areas of waste and unproductivity. Data-driven plant performance contributes significantly to all the five main lean manufacturing principles since customers receive value, the mapping of the value chains are guided by actual data received in real-time, and the data helps identify the barriers such as when there is downtime and which machine/process is causing the downtime, so this can be instantly rectified. Additionally, since there is constant delivery of data from multiple sources in the factory to the staff and personnel of the factory – they can develop pull systems due to the ease of communication and the constant analytical processing of the data. Furthermore, the continuous development of useful models based on big data and real-time data allows for continuous improvement.

…with Data-Driven Quality Control

Data-driven quality control as mentioned above looks at comparing a sample or material to a profile developed from big data rather than conducting many expensive quality-control tests on every single sample in the production line. This fits in with the concept of lean manufacturing since the number of tests is reduced but quality control is maintained.

…with Virtual Training and Validation

Virtual training and validation look at providing training in virtual environments using AI glasses and validating through the use of AI glasses that the training was beneficial, effective and actually implemented. One of the main aspects of lean manufacturing focuses on training staff about lean principles in the factory since staff are a critical component in any factory environment. Therefore, through the use of AI glasses, staff can be trained and guided on lean manufacturing principles in the factory environment they are operating in. Additionally, the AI glasses can validate that staff actually are implementing the training they received in the factory. Consequently, the lean manufacturing concepts of waste reduction and optimization of product delivery will be felt throughout the factory as a result of both virtual training and validation.

Conclusion

Industry 4.0 concepts such as connecting multiple machines, machine-to-machine communication, human-machine communication, real-time data delivery, big data processing and analytical operations really tie in with the fourth principle of lean manufacturing.

Most manufacturers not using lean manufacturing principles rely on a push system which is based on standard forecasting techniques. Production is aligned to those pre-determined set forecasts. This can be problematic since some standard forecasting techniques are inaccurate, increase waste and are not effective. The lean manufacturing pull principle of not producing anything until there is a demand relies heavily on effective communication. With the correct choice of Industry 4.0 technology, this effective communication system can be developed and thus reduce waste and optimize overall factory efficiency.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Exor distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

The Emergence of Device-level Safety Communications in Manufacturing

Guest Contributor: Tom Knauer, Balluff

Manufacturing is rapidly changing, driven by trends such as low volume/high mix, shorter life cycles, changing labor dynamics and other global factors. One way industry is responding to these trends is by changing the way humans and machines safely work together, enabled by updated standards and new technologies including safety communications.

In the past, safety systems utilized hard-wired connections, often resulting in long cable runs, large wire bundles, difficult troubleshooting and inflexible designs. The more recent shift to safety networks addresses these issues and allows fast, secure and reliable communications between the various components in a safety control system. Another benefit of these communications systems is that they are key elements in implementing the Industrial Internet of Things (IIoT) and Industry 4.0 solutions.

Within a typical factory, there are three or more communications levels, including an Enterprise level (Ethernet), a Control level (Ethernet based industrial protocol) and a Device/sensor level (various technologies). The popularity of control and device level industrial communications for standard control systems has led to strong demand for similar safety communications solutions.

Safety architectures based on the most popular control level protocols are now common and often reside on the same physical media, thereby simplifying wiring and control schemes. The table, below, includes a list of the most common safety control level protocols with their Ethernet-based industrial “parent” protocols and the governing organizations:

Ethernet Based Safety Protocol Ethernet Based Control Protocol Governing Organization
CIP Safety Ethernet IP Open DeviceNet Vendor Association (ODVA)
PROFISafe PROFINET PROFIBUS and PROFINET International (PI)
Fail Safe over EtherCAT (FSoE) EtherCAT EtherCAT Technology Group
CC-Link IE Safety CC-Link IE CC-Link Partner Association
openSAFETY Ethernet POWERLINK Ethernet POWERLINK Standardization Group (EPSG)

 

These Ethernet-based safety protocols are high speed, can carry fairly large amounts of information and are excellent for exchanging data between higher level devices such as safety PLCs, drives, CNCs, HMIs, motion controllers, remote safety I/O and advanced safety devices. Ethernet is familiar to most customers, and these protocols are open and supported by many vendors and device suppliers – customers can create systems utilizing products from multiple suppliers. One drawback, however, is that devices compatible with one protocol are not compatible with other protocols, requiring vendors to offer multiple communication connection options for their devices. Other drawbacks include the high cost to connect, the need to use one IP address per connected device and strong influence by a single supplier over some protocols.

Device level safety protocols are fairly new and less common, and realize many of the same benefits as the Ethernet-based safety protocols while addressing some of the drawbacks. As with Ethernet protocols, a wide variety of safety devices can be connected (often from a range of suppliers), wiring and troubleshooting are simplified, and more data can be gathered than with hard wiring. The disadvantages are that they are usually slower, carry much less data and cover shorter distances than Ethernet protocols. On the other hand, device connections are physically smaller, much less expensive and do not use up IP addresses, allowing the integration into small, low cost devices including E-stops, safety switches, inductive safety sensors and simple safety light curtains.

Device level Safety Protocol Device level Standard Protocol Open or Proprietary Governing Organization
Safety Over IO-Link/IO-Link Safety* IO-Link Semi-open/Open Balluff/IO-Link Consortium
AS-Interface Safety at Work (ASISafe) AS-Interface (AS-I) Open AS-International
Flexi Loop Proprietary Sick GmbH
GuardLink Proprietary Rockwell Automation

* Safety Over IO-Link is the first implementation of safety and IO-Link. The specification for IO-Link Safety was released recently and devices are not yet available.

The awareness of, and the need for, device level safety communications will increase with the desire to more tightly integrate safety and standard sensors into control systems. This will be driven by the need to:

  • Reduce and simplify wiring
  • Add flexibility to scale up, down or change solutions
  • Improve troubleshooting
  • Mix of best-in-class components from a variety of suppliers to optimize solutions
  • Gather and distribute IIoT data upwards to higher level systems

Many users are realizing that neither an Ethernet-based safety protocol, nor a device level safety protocol can meet all their needs, especially if they are trying to implement a cost-effective, comprehensive safety solution which can also support their IIoT needs. This is where a safety communications master (or bridge) comes in – it can connect a device level safety protocol to a control level safety protocol, allowing low cost sensor connection and data gathering at the device level, and transmission of this data to the higher-level communications and control system.

An example of this architecture is Safety Over IO-Link on PROFISafe/PROFINET. Devices such as safety light curtains, E-stops and safety switches are connected to a “Safety Hub” which has implemented the Safety Over IO-Link protocol. This hub communicates via a “black channel” over a PROFINET/IO-Link Master to a PROFISafe PLC. The safety device connections are very simple and inexpensive (off the shelf cables & standard M12 connectors), and the more expensive (and more capable) Ethernet (PROFINET/PROFISafe) connections are only made where they are needed: at the masters, PLCs and other control level devices. And an added benefit is that standard and safety sensors can both connect through the PROFINET/IO-Link Master, simplifying the device level architecture.

Safety

Combining device level and control level protocols helps users optimize their safety communications solutions, balancing cost, data and speed requirements, and allows IIoT data to be gathered and distributed upwards to control and MES systems.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

The product carousel turns – cabinet free into the future

DC-AE-SMP5_Blog_IndraDriveMi_Teaser_gg

Guest contributor: Reinhard Mansius, Bosch Rexroth

Do you ask yourself how to produce smallest quantities in an economically viable manner? That is no problem in the factory of the future: You are able to move your machines within the factory hall or take processing stations out of a production line, reposition them and then continue production at the push of a button. Cabinet-free drive technology is a key technology here with decentralized intelligence and comprehensive communication capabilities.

Looking in any supermarket will reveal promotional packs with twenty percent extra free or special products for Easter, summer, Halloween and Christmas. The product carousel is turning at an ever increasing pace. However, the life cycles of furniture, electronic products and cars are becoming shorter and shorter as well. At the same time, online retail accounts for an increasing share of the market. Consumers like to use online configurators in order to customize their products. As a result of this, you as a manufacturer may have to make production changes several times a week instead of producing the same products over many years. In the future, even this might not be enough and refitting may be necessary on an hourly basis.

On the basis of customer applications and numerous automation projects in our own plants, we have analyzed the requirements of such varied production processes and developed a vision for the factory of the future. Only the ceiling, the walls and the floor of the factory hall will be immovable. In contrast, it will be possible to configure machines and processing stations to create new production lines which will communicate wirelessly with each other. As a result of this approach, control cabinets will be obsolete or will no longer play a central role.

Control cabinets on their way out

The aim in automation: Making production changes primarily via software, with no manual cabling work. With traditional automation concepts, all cables lead from the actuators and sensors to the control cabinet and back again. In practice, this represents a bottleneck when it comes to installation and refitting. In contrast, the IndraDrive Mi servo drives are geared to and integrated into motors. They reduce the amount of cabling work required and take up no space in the control cabinet. They are installed with all necessary supply components in a decentralized manner in the machine or processing station. Up to 30 servo drives form a drive group on a hybrid cable string for power and communication. Only the first drive has an external connection to the higher-level control systems so that changes do not require cabling work on the control cabinet.

Bild1_36475-1200x848
The IndraDrive Mi servo drives are geared to and integrated into motors.

Switch off, reposition, switch on and carry on producing

This flexibility is available for a wide power range – from 0.4 kW to 11 kW. The drives without control cabinets have as standard four digital, freely configurable I/O connections for peripherals and sensors on board. Two of these can be used as quick measuring probes. By decoupling control communication, constructors can integrate further I/O modules, sensors and actuators for pneumatics or hydraulics. This means that automation is completely decentralized. As a result, it is very easy to make changes to the factory of the future later on. Simply switch off the station, pull out one or two plugs, push the machine to its new location, switch it on and carry on producing.

Simple, reliable commissioning

You as a machine manufacturer have scarce engineering resources which need to be used efficiently. Pre-defined, pre-programmed technology functions allow many tasks such as those involving cam discs or cam gears to be performed more quickly. With the integrated Motion Logic for individual axes, the drives take on axis-related processes independently of the central control system.

Engineering tools geared to the tasks make integration into modern concepts easier and save time. The Drive System software allows quick and reliable commissioning because its reads and applies the mechanical data from the motor encoders of the Rexroth motors. At the same time, the IndraDrive Service Tool offers easy access to service and diagnostic functions and also allows the software to be parametrized and updated. The tool which is independent of operating systems runs on HTML5-capable browsers and uses the web server which is integrated into the drive. This architecture makes it easier to replace components, while the tool offers practical access management with guest and service rights.

Bild_4_29539-1200x902
Regardless of the sector – cabinet-free drive technology is revolutionizing mechanical engineering, significantly reducing costs and improving flexibility.

Communicative in a wide range of environments

Another key requirement for the factory of the future is that it can fit into connected environments and share information flexibly. You as a machine manufacturers are looking for drive solutions which allow them to cater for the different protocols in specific regions and sectors with a single item of hardware and thus simplify their entire logistics from ordering to the supply of spare parts. Cabinet-free drive technology meets this requirement with its multi-Ethernet interface. It supports all common protocols via software selection.

Ready for high-level language functions

Bosch Rexroth’s Open Core Engineering software technology allows you to access core drive functions and the integrated Motion Logic alongside PLC automation with high-level language programs.

In the future, you will be able to use Open Core Engineering for Drives to develop or purchase previously unseen web and cloud-based functions in high-level languages. This will establish a link between intelligent servo drive and server- and cloud-based applications. High-level language programming will open up entirely new connectivity options for you. Without complex PLC interfaces, you will be able to digitize the value stream – from recording an order in the ERP system and the MES systems to the drive.

Are you ready for new flexibility?

By modular concepts you will be able to streamline your processes or machines and stations and set them up flexibly and without control cabinet modifications to create new production lines geared to specific order requirements: the factory of the future is an evolutionary process which has already begun. Cabinet-free drive technology is helping you to meet the new requirements as regards flexibility economically, intelligently and safely – today.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

System Perfection – VX25

Guest contributor: Rittal Ltd.

The VX25 is the first large enclosure system capable of meeting the technical requirements of Industry 4.0 to perfection, while at the same time ensuring faster, more productive assembly. This Rittal innovation is the result of our tireless striving for MORE: more simplicity, more speed, more benefits. More than 25 registered property rights confirm the reputation Rittal has earned as the leading innovator in enclosure technology.

vx25

1. Efficient processes

End-to-end, accurate, validated 3D data ensure a high level of planning confidence from the outset. A plausibility check in the Rittal Configuration System facilitates fast, error-free configuration of products and accessories.

2. Reduced complexity

In the VX25, we have managed to successfully replicate all the functions of the predecessor model TS 8 with far fewer accessory parts, while creating new functions and adding value. A consistent 25 mm pitch pattern across all levels and between enclosures has helped to significantly reduce the number of individual parts – for example, 40 per cent fewer punched sections/rails.

3. Improved access

The VX25 is accessible from all four sides, because components can now also be fitted to the outer mounting level from the outside. This saves 30 minutes compared with conventional assembly.  The same applies to the new option of installing mounting plates from the rear.

4. Simple interior installation

Fast assembly is facilitated by complete symmetry on all vertical and horizontal enclosure sides. The installation depth can also be increased by 20 mm with optional accessories. Multiple mounting plates can also be installed in one enclosure.

5. Tool-free installation

The simple, tool-free assembly of the handle system reduces assembly time by 50 percent. Similarly, doors can also be fitted and removed without the need for tools.

6. More functions

Even enclosure accessories can now be built into the base. For example, baying brackets and cable clamp rails can be installed there, and cables can be simply and efficiently retained and secured via the punched sections. Not only does that save time and money, it also boosts safety.

Learn more: https://www.rittal.com/com_en/vx25/index.php?lng=en

 

Bosch puts a face to the connected factory

Guest Contributor: Bosch Media Service

Hannover Messe 2018 (hall 17, booth A40)

  • 1.5 meter tall 3D avatars represent the Factory of the Future
  • Smart soccer table teaches itself with artificial intelligence
  • New portfolio pools software and services for the connected value stream

mag3-cover-blog

Stuttgart and Hannover, Germany – According to the slogan “Factory of the future. Now. Next. Beyond”, the Bosch Group is presenting at Hannover Messe what the company already offers (now) for connected factories, what solutions will soon be available (next) and what it is developing for the future (beyond). Despite all connectivity and automation, humans and their creativity are indispensable in the Industry 4.0 era. Robots support them with complex and time-consuming tasks like data processing and quality control. This is also the message of 1.5 meter tall, Pixar-style 3D avatars. They take centre stage in Hannover and move around the virtual factory. All avatars are mock-ups of market-ready applications or pilot projects. Allow us to introduce them:ActiveCockpit – the Data CollectorThe intelligent communication platform ActiveCockpit from Bosch Rexroth visualizes data to make it easy to understand for everyone. Its gigantic screen informs employees about the production status by processing and visualizing production data in real time. As a result, manufacturing becomes more transparent, while faster information processing enables clear analyses and efficient procedures. Users and companies both benefit from the immediate identification of problems. This reduces downtimes and avoids potential recall costs; the quality level increases.IoT Gateway – the Personal TrainerDespite the Industry 4.0 hype, some companies have not yet arrived in the digital age. The machines lack sensors, software or the connection to enterprise IT systems – and hence important prerequisites for the connected factory. The Rexroth IoT Gateway can quickly and easily connect both old and new machines for Industry 4.0. The IoT Gateway unites sensors, software and IoT-compatible industrial controls, making it possible to detect the condition of machines. Even operators of older machines can reap the benefits of the connected industry without large investments.

APAS assistant – the Team Player

Humans are key players in the factory of the future: creative intelligence is in the employees’ minds. They are supported by digital devices and robots. The collaborative production assistant APAS assistant, for instance, supports employees with monotonous and ergonomically challenging tasks – without a safety fence. This human-robot collaboration is made possible by an intelligent safety concept. Thanks to its sensor skin, the APAS assistant recognizes its human colleagues without touching them and stops before a collision happens. Once the employee has left the immediate vicinity, the robot independently resumes its work exactly where it stopped before. This interaction of human and machine leads to higher efficiency, and sustainable optimization of the overall productivity, since employees can concentrate on more complex tasks.

ActiveShuttle – the Delivery Guy

Robots also support with internal transport processes. They drive through the factory and, for instance, transport material cases from storage to the production station. With the ActiveShuttle, Bosch Rexroth presents a concept for an intelligent, driverless transport system that automates the internal flow of material and goods. The integrated lifting platform automatically unloads goods in the logistics and manufacturing areas. Cyclical transport or a consumption-based material supply can also be realized with ActiveShuttle.

XDK – the Messenger

The universally programmable IoT multisensor XDK (Cross Domain Development Kit) is the “midwife“ for companies, who want to develop their own applications quickly and flexibly. In a compact box, the XDK combines a variety of MEMS sensors, for instance to measure acceleration, rotation angle, humidity, air pressure or temperature, with a powerful processor for the analysis, processing and transmission of the sensor data. Be it for predictive maintenance, monitoring or retrofitting: the XDK can be deployed universally; the programming language XDK Mita facilitates programming.

Apart from the avatars, Bosch is exhibiting the following highlights:

Foosball: learning by playing thanks to artificial intelligence

Table soccer has to be learned. To do so, we absorb and digest information with our senses, in this case the eyes. With the help of our brain, we learn systematically how to hold, play or pass the ball with the right force at the right time. Artificial intelligence (AI) works according to the same principle: instead of the brain, software processes the information with algorithms; cameras and sensors replace our senses. The soccer table, also called foosball or KI-cker (KI is the German abbreviation for artificial intelligence), teaches itself and optimizes its soccer abilities with every new co-player. Industrial applications such as robots or autonomous vehicles can also learn numerous tasks and optimize their performance thanks to AI. Their biggest advantage: even after the umpteenth try, they will not be frustrated.

Smart Cab for connected farming

Smart Cab, co-developed by Bosch as a member of the CAB concept cluster, turns agricultural vehicles into connected control centres in the field. All components – vehicles, cameras and drones alike – can interact with each other. Via the cloud, camera drones send detailed pictures of the condition of crops to the driver’s cab, and operators are warned by the object recognition camera about living obstacles such as deer. Vehicle users can download specific functions from a feature store over the air directly to the machines. Depending on the weather or soil conditions, for example, the nozzle settings can be adjusted.

Nexeed – new Industry 4.0 software for production and logistics

Connecting the entire value stream

Hardware applications need innovative software solutions running in the background to provide the necessary connectivity. At Hannover Messe, Bosch is presenting its Nexeed new software portfolio, which pools Bosch software and services for production and logistics. The Nexeed solutions make day-to-day work easier for employees and optimize production and logistics processes in terms of transparency, agility, cost, quality and time. The portfolio ranges from the sensor, over machine automation to the cloud. Nexeed solutions can be combined to connect individual lines, entire plants and plant networks, as well as their intralogistics and external goods flow.

Systematic production improvement

The Nexeed Production Performance Manager, for example, ensures systematic improvement of production by helping employees with decision making. For this purpose, the software collects and harmonizes production and machine data from many different sources and “translates” them into a common language. Subject-specific functions like the Ticket Manager, which was developed for the lighting company Osram, make it possible for the employees to complete their tasks faster and more purposeful. Using an app, employees are informed about the status of their more than 80 connected machines at all times. Upcoming tasks such as maintenance work or subsequent material deliveries are displayed, evaluated and assigned to the employee with the appropriate qualification.

Opening the data treasure chest with Data Analytics

The production process produces a large quantity of data of various types – the most important raw material of Industry 4.0. With Nexeed Data Analytics, this data can be used intelligently to identify new optimization potential. Customers do not have to deal with Data Analytics themselves; this task is entirely up to the Bosch experts. They gain important insights from product, process and machine data, which can be used to achieve improvements regarding quality, cost and delivery performance. Customers receive an individual service from the first data analysis to comprehensive prediction models.

Intralogistics en route to the digital age

Compared to modern production, the intralogistics sector is lagging behind regarding connectivity. Nexeed Intralogistics Execution deals with the three big challenges: keeping an eye on the vehicle fleet, optimizing material storage and designing transport routes dynamically. Information on all intralogistics processes are available in real-time. By unifying relevant data from different sources – for example RFID in the internal supermarket, forklift localisation and inventory information – the solution not only helps logistics specialist with the daily work, but also allows long-term planning.

Seamless transparency throughout the supply chain

These days frequent travellers can easily share information about their whereabouts. With Nexeed Track and Trace, Bosch has developed a logistics solution that enables the freight to record a digital travel diary. The software not only shares the current location, but also regularly sends information about temperature, vibration and humidity to the cloud via wireless sensors and gateways. This way, supply chains can be traced and permanently optimized. The international freight forwarding and logistics company Panalpina makes use of these benefits. They use Nexeed Track and Trace for a transparent supply chain – not only on the road, but also in the air. On the first test route between Germany and the recipient plant in the U.S, each package was equipped with a sensor. It records regularly relevant parameters such as vibrations. At each gateway, for instance when unloading the truck at the terminal or loading the airplane on the runway, data and the location of the time-sensitive goods are transmitted to the cloud. The Panalpina sees whether the goods have been loaded into the airplane and how they are doing.

Video: https://youtu.be/gqCNU87dgz4

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

 

Changing the Paradigm from Safety vs. Productivity to Safety & Productivity

Guest Contributor: Tom Knauer, Balluff

In a previous blog, we discussed how “Safety Over IO-Link Helps Enable Human-Robot Collaboration”. It was a fairly narrow discussion of collaborative robot modes and how sensors and networks can make it easier to implement these modes and applications. This new blog takes a broader look at the critical role safety plays in the intersection between the machine and the user.

In the past, the machine guarding philosophy was to completely separate the human from the machine or robot.  Unfortunately, this resulted in the paradigm of “safety vs. productivity” — you either had safety or productivity, but you couldn’t have both. This paradigm is now shifting to “safety & productivity”, driven by a combination of updated standards and new technologies which allow closer human-machine interaction and new modes of collaborative operation.

Tom_Safety1.pngThe typical machine/robot guarding scheme of the past used fences or hard guards to separate the human from the machine.  Doors were controlled with safety interlock switches, which required the machine to stop on access, such as to load/unload parts or to perform maintenance or service, and this reduced productivity.  It was also not 100% effective because workers inside a machine area or work cell might not be detected if another worker restarted the stopped machine.  Other drawbacks included the cost of space, guarding, installation, and difficultly changing the work cell layout once hard guarding had been installed.

We’ve now come to an era when our technology and standards allow improved human access to the machine and robot cell.  We’re starting to think about the human working near or even with the machine/robot. The robot and machinery standards have undergone several changes in recent years and now allow new modes of operation.  These have combined with new safety technologies to create a wave of robot and automation suppliers offering new robots, controllers, safety and other accessories.

Standards
Machine and robot safety standards have undergone rapid change in recent years. Standard IEC 61508, and the related machinery standards EN/ISO 13849-1 and EN/IEC 62061, take a functional approach to safety and define new safety performance levels. This means they focus more on the functions needed to reduce each risk and the level of performance required for each function, and less on selection of safety components. These standards helped define, and made it simpler and more beneficial, to apply safety PLCs and advanced safety components. There have also been developments in standards related to safe motion (61800-5-2) which now allow more flexible modes of motion under closely controlled conditions. And the robot standards (10218, ANSI RIA 15.06, TS15066) have made major advances to allow safety-rated soft axes, space limiting and collaborative modes of operation.

Technology
On the technology side, innovations in sensors, controllers and drives have changed the way humans interact with machines and enabled much closer, more coordinated and safer operation. Advanced sensors, such as safety laser scanners and 3D safety cameras, allow creation of work cells with zones, which makes it possible for an operator to be allowed in one zone while the robot performs tasks in a different zone nearby. Controllers now integrate PLC, safety, motion control and other functions, allowing fast and precise control of the process. And drives/motion systems now operate in various modes which can limit speed, torque, direction, etc. in certain modes or if someone is detected nearby.

Sensors and Networks
The monitoring of these robots, machines and “spaces” requires many standard and safety sensors, both inside and outside the machine or robot. But having a lot of sensors does not necessarily allow the shift from “productivity vs. safety” to “productivity & safety” — this requires a closely coordinated and integrated system, including the ability to monitor and link the “restricted space” and “safeguarded space.” This is where field busses and device-level networks can enable tight integration of devices with the control system. IO-Link masters and Safety Over IO-Link hubs allow the connection of a large number of devices to higher level field busses (ProfiNet/ProfiSafe) with effortless device connection using off-the-shelf, non-shielded cables and connectors.

Balluff offers a wide range of solutions for robot and machine monitoring, including a broad safety device portfolio which includes safety light curtains, safety switches, inductive safety sensors, an emergency stop device and a safety hub. Our sensors and networks support the shift to include safety without sacrificing productivity.

To learn more about Safety over IO-Link, visit www.balluff.com

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.