Choosing Between M18 and Flatpack Proxes

Guest Contributor: Will Healy III, Balluff

Both M18s and flatpacks are inductive or proximity sensors that are widely used in mechanical engineering and industrial automation applications. Generally, they are similar in that they produce an electromagnetic field that reacts to a metal target when it approaches the sensor head. And the coil in both sensors is roughly the same size, so they have the same sensing range – between 5 to 8 millimeters. They also both work well in harsh environments, such as welding.

There are, however, some specific differences between the M18 and flatpack sensors that are worth consideration when setting up production.

M18

One benefit of the M18 sensor is that it’s adjustable. It has threads around it that allow you to adjust it up or down one millimeter every time you turn it 360 degrees. The M18 can take up a lot of space in a fixture, however. It has a standard length of around two inches long and, when you add a connector, it can be a problem when space is an issue.

Flatpack

A flatpack, on the other hand, has a more compact style and format while offering the same sensing range. The mounting of the flatpack provides a fixed distance so it offers less adjustability of the M18, but its small size delivers flexibility in installation and allows use in much tighter fixes and positions.

The flatpack also comes with a ceramic face and a welding cable, especially suited for harsh and demanding applications. You can also get it with a special glass composite protective face, a stainless-steel face, or a steel face with special coatings on it.

Each housing has its place, based on your detection application, of course. But having them both in your portfolio can expand your ability to solve your applications with sensor specificity.

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

5 Manufacturing Trends to Consider in 2022

by Will Healy III, Balluff

Well, it’s that time of year again were we all start to forget the current year (maybe that’s ok) and start thinking of plans for the coming year. Strategy and budget season! 2022 is only a few weeks away! …maybe it’s just me that’s doing planning for the new year already! I thought I’d share 5 insights I’ve had about 2022 that you might benefit from as you start thinking of the new year.

1️⃣ Electric Vehicles. The Electric Vehicles manufacturing market is receiving major investments, machine builders are building up expertise and consumers are trending towards more electric vehicles according to PEW research, 7% of US adults say they currently own a hybrid or electric but 39% say the next time they purchase a vehicle they are at least somewhat likely to seriously consider electric. Traditional automotive won’t go away any time soon, but I see this as a growth generator. (https://www.pewresearch.org/fact-tank…)

2️⃣ Automation in Ag & Food. Automation in the Agriculture, Food, Beverage & Packaging markets is also growing strong with more demand for packaged goods and more SKUs than ever before. Urbanization combined with shortages in agriculture labor markets are driving investments in automation technologies in manufacturing and on the farm. Robotic agriculture startups seem to be growing faster than weeds and are providing real value for those who are struggling to get product from the field to the factory.

3️⃣ Supply Chain Disruption. I’ve seen several economists say the chip shortage will be with us well into 2023 and now I hear rumors of plastics or other materials having disruptions. Disruption might be the new normal for the short to mid-term. I flew out of LAX a few weeks ago and there were dozens of container ships parked outside the port. We are also seeing a major breakdown of our “over-land” logistics infrastructure. Investment in automation and labor for this market will be vital to a strong recovery. Plan for these things and be willing to have open and honest discussions with your vendors and your customers. Untruths might get you by in the short term but could permanently damage your business relationships for years.

4️⃣ Real not Marketing Sustainability. With the increase of Generation Z (18-24year old) workers in our economy, they are pushing us to truly work towards sustainability much more than Millennials did before them. What this means is other markets that I see as growth opportunities are ones where we can have big impact on this like: mining, waste/recycling and agriculture.

5️⃣ Technology as an HR tool. All manufacturers will be impacted by the skills-gap and labor shortage if you aren’t already. Part of your strategy for 2022 must include automation and robotics as part of your labor strategy. How can we use automation and robotics to do our dull, dirty, dangerous jobs or How can we use automation and robotics to extend the careers of our long-term experienced workers? What disruptive technology should you be investing in? 3D printing, machine vision, AR/VR, exoskeletons, drones, virtual twin, AI, Predictive Maintenance, Condition Monitoring, Smart Sensors. Pick something you will do different, you have to. What do you see for 2022 that will have a major impact on our businesses?

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Start Condition Monitoring With Vibration Sensors

by Anjesh Shekhar, Balluff

IIOT (Industrial internet of things) has gained much traction and attraction in past years. With industries getting their assets online for monitoring purposes and new IO-Link sensors providing a ton of information on a single package, monitoring machines has become economically feasible.

Vibration is one of the most critical metrics regarding the health of machines, providing early detection of potential faults – before they cause damage or equipment failure. But since this is a relatively new field and use case, there is not much information about it. Most customers are confused about where to start. They want a baseline to begin monitoring machines and then finetune them to their use case.

“Vibration is one of the most critical metrics regarding the health of machines…”

One approach to solve this is to hire a vibration expert to determine the baseline and the best location to mount the vibration measuring sensor. Proper setup increases the threshold of getting into condition monitoring as a new user figures out the feasibility of such systems.

I direct my customers to this standardized baseline chart from ISO, so they can determine their own baselines and the best mounting positions for their sensors. The table shows the different standards for severity for different machine classes. These standards detail the baseline vibration and show the best place to mount the sensor based on the machine type.

Click here for more information on the benefits of condition monitoring.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

PERFORMANT AS ON DAY ONE: WHY HYDRAULICS MUST BE REPAIRED THE ORIGINAL WAY

Guest Contributor, Bosch Rexroth

Hydraulic drives move high loads and ensure safety-relevant functions. Their failure can result in tremendous downtime costs. It is therefore important to maintain the interaction between material, surface quality and fluid as coordinated by the manufacturer. With spare parts and repairs according to original specifications, operators can secure original performance over a long period of time.

Every year, millions of euros are invested in the development of new hydraulic components. Each new generation of solutions is even more powerful, energy efficient and reliable than the one before. The underlying field of research is called tribology – the science of friction, lubrication and wear.

Ensuring smooth performance

Tribology investigates all frictional processes that occur between two surfaces moving in relation to each other and considers the type of material, surface quality and the lubricant (fluid) as the main influencing variables. If hydraulic components are developed according to tribological principles, important savings can be made both in energy and material consumption and in production and maintenance. How can operators secure the advantages of the latest product generation for as long as possible?

Figure1.png

Figure 1: Material, surface and lubrication: The scientific field of tribology investigates the friction between two bodies and seeks optimal conditions for minimal wear.

Change a perfect system? Better not!

Hydraulic components in which materials, surfaces and fluid are matched to each other in such a way that they achieve optimum efficiency with minimum wear are called a “tribological system”. This perfect interaction stands and falls with maintenance. If only a single parameter is changed, the system loses its balance, i.e. the optimum efficiency is no longer achieved, energy consumption and electricity costs increase and the service life is negatively affected. This happens, for example, if spare parts made of a different material or with a lower surface quality are used, if components are improperly repaired or a fluid is used that does not match the material.

Figure2.png

Figure 2: Fluid-related damage to various components of an axial piston pump.

Play it safe: Spare parts from the manufacturer

To prevent operators from suffering functional losses and damage, Bosch Rexroth subjects the evaluation of fluids to strict requirements that go far beyond the recommended standard. The manufacturer also sets the same high-quality standards for its own spare part production as for the original. Replicas, on the other hand, offer neither the same material composition nor the same surface quality. The consequences are unplanned outages, significantly higher life cycle costs and premature new investments. Choosing original spare part is already worthwhile with the smallest parts. For example, Bosch Rexroth provides completely ready-to-install seal kits in original equipment quality – including parts list and exploded drawing. Thanks to the precise instructions, the average time required for dismantling, cleaning and reassembling a pump is reduced from a good two hours to less than 60 minutes.

Figure3.png

Figure 3: Surface comparison: In contrast to the original from Bosch Rexroth (left), the plagiarism (right) shows large scores. The unfavorable flow conditions decrease efficiency. Leakage and cavitation are increased, especially under high pressure.

Abb4.png

Figure 4: Serious quality differences in material and processing: The plagiarism (right) cannot withstand high pressure and “breaks”. The result: premature wear and tear and damage due to liquid contamination.

Original repair receives manufacturer specification

Repairs that are not commissioned at the manufacturer or certified partners often also result in unforeseen expenses. This is because without access to current data and parts lists, without in-depth know-how and without the right test benches, other suppliers cannot restore the original specification including functional reliability. In the worst case, there is even a risk of liability.

What ultimately distinguishes an original repair from an uncertified one? Here’s an example: When a Bosch Rexroth axial piston pump is inspected and repaired by trained service personnel in a specially equipped, ISO 9001-certified service center, it undergoes qualified testing and repair according to standard guidelines and processes. All failure-critical components are replaced and the original manufacturer’s specification is tested and confirmed on the test bench.

Replacement is better than rework

Non-certified suppliers frequently rework components, thereby destroying the original surface quality of highly stressed components such as pistons with slide shoe, control plates or sliding disks. Control valves on pumps are usually only cleaned and reinstalled. This short-sighted repair practice leads to increased leakage and consequently to a strong vibration tendency. Both accelerate wear, reduce efficiency and shorten the service life. By repairing with original Rexroth spare parts from the manufacturer, however, operators can ensure the original performance and availability for the next few years, including a twelve-month warranty on new parts. In addition, fixed-price repairs and agreed throughput times ensure cost security. This way, operators are protected from surprises and can plan ahead.

Figure5.png

Figure 5: Rework vs. replacement: Leakage oil measurements on a remanufactured pump controller (A4VSO) show significantly higher values than when the original component is replaced: Vibrations, increased wear and early failures can be the result.

Avoiding liability risks

In some countries, improper repairs can also result in liability risks for the operator. In Germany, for example, the manufacturer is not liable under § 1 Sections 2 and 3 ProdHaftG (German Product Liability Act ) for defects that occur after the product has been placed on the market. Instead, the operator is responsible for the consequences of improper repairs. If the operational safety according to the CE mark is no longer given, the insurance company might not pay for damages.

Our conclusion: Sometimes saving money doesn’t pay off – preserve values instead

Those who want to save costs in the short term – by using counterfeit products and non-original repairs – pay extra in the long term. To benefit permanently from the original performance and a long service life, it pays off to include the manufacturer’s expertise in terms of technology, industry and application in maintenance, too. Only with proven manufacturer specifications can the original performance data and resulting function, productivity and efficiency be guaranteed.

Close cooperation with Bosch Rexroth is also worthwhile for other reasons: for example for engineering support, for professional instruction and training of operating and maintenance personnel, or to update the cost-effectiveness, energy efficiency and safety of existing systems. This way, a supplier relationship becomes a profitable partnership for a perfectly smooth operation.

CMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

________________________________________________________________________________________________________________________

4 Applications that Benefit from LCP DX-Based Liquid Cooling

Guest Contributor, Herb Villa, Rittal

Liquid cooling of IT equipment, now at the row level instead of for an entire white space, is gaining momentum in the distributed data center world, where the demand for efficiency in cooling higher density racks is making IT professionals rethink their reliance on traditional methods. Various liquid cooling technologies – direct-to-chip, immersion, direct expansion and others – are winning favor in the different IT spaces. Why? Because they bring heat removal closer to the equipment, require little if any changes to infrastructure, and are easy to scale as demand grows; when you need to add more racks, additional cooling capacity is achieved with the cooling systems supporting increased IT enclosures.

Liquid cooling is especially advantageous for small and medium-sized businesses that have on-premise servers mounted in one or more enclosures. Many of the IT professionals supporting these organizations are forced to put these in some remote, out-of-the-way space within the building, assuming (wrongly) that as long as the building’s HVAC system has a vent terminating in that room, cooling the equipment won’t be a problem.

But we’ve seen that “comfort cooling,” which is the job of a facility’s HVAC system, isn’t adequate for server rack cooling and the demands of heat-generating IT equipment. Those demands are non-negotiable: precise temperature and humidity control, and proper airflow to get the heat away from the equipment.

Focusing on just a few different market sectors can illustrate the demands of the new IT environment. Hospital & healthcare, schools, factory floor, distribution centers are all examples of the types of organizations and facilities often forced to utilize spaces never intended to support the climate control needs of IT equipment: unused offices, janitors’ closets, corners of basements, etc. And because all rely on data to run their businesses, they’re all at risk of system failure because they aren’t addressing the critical climate needs of their IT investments.

Enclosure Climate Control in Hospitals

Data is critical in ensuring quality patient care and the smooth, efficient performance of even the smallest healthcare facilities. Hospitals, clinics and physician practice groups rely on IT equipment to store and transfer data among departments, achieve operational efficiency and maintain compliance using enterprise resource planning (ERP) systems. Without proper temperature, humidity and airflow control, the IT equipment that processes and stores necessary data could fail, and the cost of downtime and potential lost data is immeasurable.  There is also extremely limited space to place these systems; after all, the main business of a hospital is patient care, not IT.  Especially today in the midst of a global pandemic, healthcare facilities must maximize space for their patients, not their IT appliances.

Data Center Cooling in Education/School Campuses

What happens when a school’s “comfort cooling” system can’t keep up with all the heat being generated by the server room’s IT equipment (if they are lucky enough to even have such a space)? These systems are intended to keep humans comfortable, not maintain the precision and optimal air flow needed to remove heat generated by the IT equipment. Schools rely on IT equipment to help maintain productivity, organize data, and reduce time and effort of work that would otherwise be manual. Servers and processors enable insights that help administrators allocate the right resources to the right areas at the right time, connect campuses and departments, and speed communication between students, teachers, administrators and parents. And as with the healthcare sector, COVID-19 has placed enormous demands on bandwidth and compute capability as school systems have become virtual classrooms supporting remote learning applications and programs. This means more equipment, more heat, and less available installation space.

Server Rack Cooling in Manufacturing

Manufacturing facilities represent some of the most uncontrolled environments in which to place IT equipment. Wide temperature ranges, dust, debris, moisture and corrosive elements are all enemies of smooth factory floor operations, and because there is often no dedicated IT room (or at least one designed for IT), the risk of equipment degradation and failure is very real. Manufacturing organizations rely heavily on manufacturing execution systems (MES) and ERP systems for visibility into all aspects of the supply chain and production, and for seamless integration between the shop floor and Billing, Sales, Operations, HR and other departments.

Climate Control Units in Distribution

Distribution warehouses are notorious for having subpar climate control: they’re often either too hot or too cold; when air conditioning is running, cold air is “dumped” to the floor and doesn’t mix with warmer air near the ceiling (and the opposite situation when the heat is running); air flow throughout the building is almost impossible to control; and air leaks from the inside to outside and vice versa are common. Imagine, then, the effect of a poorly controlled climate in a small room where heat is being generated.

Like manufacturing, warehousing and distribution rely on up-to-date information about inventory, customers (through a CRM tool), fleet management, marketing, shipping and more. When equipment is compromised by temperatures that are too high (and in some cases too cold), all the data that’s used to ensure optimum facility and system performance is at risk for failure.

The best solution for cooling racks for these types of organizations is one that’s similar to a building’s own AC – one that uses direct expansion (DX). Heat removal is achieved with a compressor / condenser refrigeration cycle to reach and maintain a setpoint temperature and humidity level but that is designed to work at the cabinet (sometimes called enclosure) level.

Rittal’s DX-based solution (part of the Liquid Cooling [LCP] family of products) is ideal for businesses, like those above, that have “mission-critical” data needs but less-than-ideal data room options. The close coupled LCP DX 20kW provides a single or multiple IT enclosures with up to 20kW heat removal capacity, available in both closed loop rack and open loop inline options. Some of the benefits of this solution include:

  • A small footprint, making it appropriate for nearly any location within the building
  • Precise temperature and humidity control that responds to varying equipment heat loads
  • Local climate control – airflow is provided to one or more cabinets in a closed system, or cooling to the entire space in an open airflow configuration
  • Simple maintenance – tool-less fan replacement, easy-to-access electrical connections and remote notification of all operational parameters
  • Redundancy – up to 8 units can be interconnected, with coordinated air flow, alarms, and time-of-day operation
  • Reduce the need for a dedicated room to support IT equipment.  With proper planning and physical security, it is possible to place these systems out on the floor or shared space. The costs to build and maintain a dedicated IT room are eliminated

LEARN MORE ABOUT OUR 20kW LCP RACK AND INLINE DX

Today, every organization, no matter the size or industry, relies on optimum IT equipment performance in order to meet its ongoing operational demands. If yours is putting rack cooling needs at the mercy of your building’s HVAC system, the risk of system downtime is very real, and the potential cost to operations significant. The best protection against system failure is to utilize IT cabinets with liquid cooling capabilities that offer precise control of temperature, humidity and airflow – all critical factors when it comes to ensuring that your organization’s work is never disrupted.

CMA/Flodyne/Hydradyne is an authorized  Rittal distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

IT Equipment Cooling: Why Your HVAC System Is a Poor Climate Control Unit

Guest Contributor: Herb Villa, Rittal

IT Managers working in small and mid-sized businesses often find themselves searching their buildings for unused space to house the company’s IT enclosures. Mail rooms, empty offices, janitors’ closets…all have been repurposed into data closets holding one to a few racks. This approach may be the right choice in terms of square footage needed, but when it comes to proper climate conditions for sensitive IT equipment, it could not be more wrong! At best, these spaces are cooled using only the building’s AC system. At worst? An open window.

A building’s existing air conditioning system (or combined heat and air conditioning system) is designed to create comfortable environments for employees – the reason they’re sometimes referred to as “comfort systems.” When IT racks need to be placed somewhere on site, it’s thought that “any old room” will do because AC ductwork usually terminates in these spaces. But the reality is that even if you were to add ducts to supplement the building’s AC, relying on a system designed for humans is not a good solution for IT equipment.

Server rooms need more targeted cooling to keep the temperature within a specific range and prevent the servers from overheating. According to ASHRAE (the American Society of Heating, Refrigerating and Air-Conditioning Engineers), the appropriate temperature range for server rooms is between 64.4 and 80.6 Fahrenheit. This requires a discrete cooling solution capable of monitoring and managing the temperature of both the equipment and the room. The same cooling system must also be capable of regulating humidity within the precise margins required by sensitive equipment. Finally, building HVAC will not provide sufficient air flow volume for heat removal from installed appliances; the CFM requirements for comfort cooling are significantly lower than airflow required to remove heat from the IT devices.

Five Enclosure Climate Control Challenges

Still think your building AC is up to the task? Here are some of the hidden risks you will be vulnerable to:

  • Contaminants. A repurposed space can be exposed to airborne dust, gasses and moisture that seep into the room and compromise the quality of the air and the performance of the equipment; these may not be adequately removed from the room using only the existing AC.
  • Reliability/redundancy. Even a short interruption in power supply to computer equipment can lead to loss of data, and the same is true for interruptions in cooling. Most buildings do not have redundant cooling in place and often an AC system breakdown can last hours – a costly risk for IT equipment.
  • Comfort systems cycle on and off. The temperature in the closet will decrease when the cooling system is on and increase when it is off, resulting in temperature swings throughout the day that can stress the equipment more than a consistent higher temperature.

And the issue isn’t only related to daily temperature swings, but more sustained periods that put the equipment outside the zone. Comfort cooling systems are often programmed for higher temperature setpoints on weeknights and weekends to conserve energy. The average temperature within a server closet will generally increase by the amount the temperature set point is increased.

  • Combined heating and cooling HVAC systems deliver heat in winter. The same ductwork that supplies cool air to the IT closet in warmer months will deliver heated air in colder months. This almost guarantees overheating of the equipment and increases the risk of equipment failure.
  • Inability to scale. Every kilowatt of power used by the IT equipment creates a kilowatt of heat that must be removed. If you were to add an additional rack and more equipment, the existing HVAC system would be even less capable of maintaining the ideal temperature.

The Solution for Your Climate Control Unit Needs

So, what is the best option for supporting mid-size installations and 10-30kW thermal loads in a small space? A liquid cooling solution is one of the most effective options for data closets, IT rooms and other confined spaces that would otherwise rely on a building’s HVAC system. One of the best is Rittal’s LCP DX 20kW – an enclosure cooling solution adaptable to a variety of applications and locations. The LCP DX provides 20kW of cooling capacity and is available in closed loop Rack and open loop Inline options. The closed loop configuration maintains rack temperatures completely independent of room conditions; the open loop option maintains a constant room temperature, cooling the rack equipment as well as other equipment that may be in the room.

LEARN MORE ABOUT OUR 20kW LCP RACK AND INLINE DX

The LCP DX 20kW is a server rack cooling solution with the features that make it ideal for repurposed spaces – and limited staff:

  • A small footprint
  • Easy to maintain (tool-less fan replacement; easy access electrical connections)
  • Precise climate control (set point temperature is maintained as heat loads vary)
  • Ongoing monitoring (remote notification)
  • Variable capacity (follow heat load variations from 5 to 20kW)

Learn more about your data center cooling options by reading our white paper, “Data Center Cooling: 4 Effective Types of Liquid Cooling.” In it you’ll find valuable information about why liquid cooling is becoming the go-to choice for data centers of all sizes, and 4 of the best options for different scenarios.

CMA/Flodyne/Hydradyne is an authorized  Rittal distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Understanding Hygienic Zones

Guest Contributor: Rittal

In any facility that processes food, beverages or pharmaceuticals, cleanliness is the absolute top priority. To avoid product contamination and bacteria growth, these facilities have strict cleaning requirements that include the use of aggressive cleaning agents and high-power spray wash downs. In order to protect the critical components for these processing lines, enclosures, accessories and equipment must be specified properly and meet facility requirements including IP69K,

Because of the variations in processes and practices in each section of these facilities, the cleaning and equipment requirements will vary by each hygienic zone. The infographic below defines the Basic, Medium and High Hygiene zones as well as outlines what specific considerations you should keep in mind for specifying systems and enclosures.

Hygienic Zones

Hygienic Zones Infographic

When specifying equipment for hygienic zones, look specifically for hygienic designs. For more information on selecting control panels and HMIs in these facilities, check out our article in Machine Design Magazine. Additional design guidance for food and beverage facilities can be found by downloading the Food and Beverage Handbook.

CMA/Flodyne/Hydradyne is an authorized  Rittal distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Building Blocks of the Smart Factory Now More Economical, Accessible

Guest Contributor: Balluff

A smart factory is one of the essential components in Industry 4.0. Data visibility is a critical component to ultimately achieve real-time production visualization within a smart factory. With the advent of IIoT and big-data technologies, manufacturers are finally gaining the same real-time visibility into their enterprise performance that corporate functions like finance and sales have enjoyed for years.

The ultimate feature-rich smart factory can be defined as a flexible system that self-optimizes its performance over a network and self-adapts to learn and react to new conditions in real-time. This seems like a farfetched goal, but we already have the technology and knowhow from advances developed in different fields of computer science such as machine learning and artificial intelligence. These technologies are already successfully being used in other industries like self-driving cars or cryptocurrencies.

1
Fig: Smart factory characteristics (Source: Deloitte University Press)

Until recently, the implementation or even the idea of a smart factory was elusive due to the prohibitive costs of computing and storage. Today, advancements in the fields of machine learning and AI and easy accessibility to cloud solutions for analytics, such as IBM Watson or similar companies, has made getting started in this field relatively easy.

One of the significant contributors in smart factory data visualization has been the growing number of IO-Link sensors in the market. These sensors not only produce the standard sensor data but also provide a wealth of diagnostic data and monitoring while being sold at a similar price point as non-IO-Link sensors. The data produced can be fed into these smart factory systems for condition monitoring and preventive maintenance. As they begin to produce self-monitoring data, they become the lifeblood of the smart factory.

Components

The tools that have been used in the IT industry for decades for visualizing and monitoring server load and performance can be easily integrated into the existing plant floor to get seamless data visibility and dashboards. There are two significant components of this system: Edge gateway and Applications.

2
Fig: An IIoT system

Edge Gateway

The edge gateway is the middleware that connects the operation technology and Information technology. It can be a piece of software or hardware and software solutions that act as a universal protocol translator.

As shown in the figure, the edge gateway can be as simple as something that dumps the data in a database or connects to cloud providers for analytics or third-party solutions.

Applications

One of the most popular stacks is Influxdb to store the data, Telegraf as the collector, and Grafana as a frontend dashboard.

These tools are open source and give customers the opportunity to dive into the IIoT and get data visibility without prohibitive costs. These can be easily deployed into a small local PC in the network with minimal investment.

The applications discussed in the post:

Grafana

Telegraf

Influxdb

Node-red Tutorial

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

 

How Cameras Keep Tire Manufacturers From Spinning Their Wheels

Guest contributor: John Tackacs, BalluffTires being transported between the curing presses and the staging area before their final inspection often become clustered together. This jam up can cause imperfections to the tires and damage to the conveyors. To alleviate this problem, some tire manufacturers have installed vision systems on their conveyors to provide visual feedback to their production and quality teams, and alert them when the tires start to get too close together.

A vision system can show you alerts back in your HMI by using inputs and outputs built into the camera or use an IO-Link port on the camera to attach a visual display, for example a SmartLight with audible and flashing alerts enabled. Once you see these alerts, the PLC can easily fix the issue from the program or a maintenance worker or engineer can quickly respond to the alert.

Widespread use of smart vision cameras with various pixel options has become a trend in tire manufacturing. In additional to giving an early alert to bunching problems, vision systems can also capture pictures and data to verify that tires were cleared all the way into final inspection. Although tire machine builders are being asked to incorporate vision systems into their machines during the integration process, it is more likely for systems to be added in plants at the application level.

Vision systems can improve production throughput, quality issues and record production data about the process for analytics and analysis down the road. Remember a tire plant usually consists of these processes in their own large section of the plant and involves many machines in each section:

  • Mixing
  • Tire Prep
  • Tire Build
  • Curing
  • Final Inspection

Each one of these process areas in a plant can benefit from the addition of vision systems. Here are a few examples:

  • Mixing areas can use cameras as they mill rubber and detect when rubber sheets are off the rollers and to look for engraved information embedded in the rubber material for logistics and material flow to the proper processes.
  • Tire Prep can use cameras to ensure all the different strand colors of steel cords are embedded or painted on the rubber plies before going to tire build process.
  • Tire Build can use vision to detect the side-wall beads are facing the right direction and reading the embedded position arrows on the beads before tire plies are wrapped around them.
  • Curing area can use vision to monitor tire clusters on conveyors and make sure they are not too close to each other by using the measuring tool in the camera software.
  • Final Inspection can use vision to read barcodes, QR codes, detect colors of embossed or engraved serial numbers, detect different color markings and shape of the markings on the tire.

The use of machine vision systems can decrease quality issues by pinpointing errors before they make it through the entire production process without detection.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Mobile Equipment Manufacturers: Is It Time to Make the Switch to Inductive Position Sensors?

Manufacturers of mobile equipment are tasked with the never-ending pursuit of making their machines more productive while adhering to the latest safety regulations, and all at less cost. To help achieve these goals, machines today use electronic control modules to process inputs and provide outputs that ultimately control the machine functions. Yet with all the changes in recent years, one component left over from that earlier era remains in regular use — the mechanical switch.  Switches offered a variety of levers, rollers, and wands for actuation, and many were sealed for an IP67 rating for outdoor use, but they came with an array of problems, including damaged levers, contact corrosion, arcing concerns, dirt or grain dust ingress, and other environmental hazards. Still, overall they were an acceptable and inexpensive way to receive position feedback for on/off functions.

Today, mechanical switches can still be found on machines used for boom presence, turret location, and other discrete functions. But are they the right product for today’s machines?

The original design parameters may have required the switch to drive the load directly, and therefore a rating of 10A@240V might be a good design choice for the relay/diode logic circuits of the past. But a newly designed machine may be switching mere milliamps through the switch into the control module. Does the legacy switch have the proper contact plating material for the load today? Switches use rare metals such as rhodium, palladium, platinum, gold, and silver in attempts to keep the contact resistance low and to protect those contacts from corrosion. Consequently, as China pursues Nonroad Stage IV standards, these metals, some also used in catalytic converters, have sharply increased in price, leading to substantial cost increases to switch manufacturers and ultimately switch users.

A better approach to position feedback for today’s mobile machines is the inductive position sensor. Inductive sensors offer a sealed, non-contact alternative to mechanical switches. Sensing ferrous and non-ferrous metals without physical contact, they eliminate many of the field problems of the past, and non-metallic substances such as water, dirt, and grain dust, do not affect the operation. These qualities make the sensor very suitable for the harsh conditions found in agricultural and construction environments.

Inductive proximity sensors come in a variety of form factors:

Threaded cylindrical – With zinc-plated brass or stainless-steel housings, the threaded barrel styles are popular for their ease of mounting and gap adjustment.  

1

Low profile rectangular – These “flatpack” style sensors are great under seats for operator presence.

2

Block designs – The compact, cubed package is ideal for larger sensing ranges.

3

Large cylindrical – These large “pancake” style sensors are great for detecting suspension movements and other applications requiring extreme ranges.

4

Inductive position sensors are more than just a discrete product used for detecting linkage, operator presence, or turret stops; They can also perform the duties of a speed sensor by counting teeth (or holes) to determine the RPM of a rotating shaft. Other models offer analog outputs to provide a continuous feedback signal based on the linear location of a metal linkage or lever. Safety rated outputs, high temperatures, and hazardous area options are some of the many product variants available with this electromagnetic technology.
So, perhaps it’s time to review that legacy switch and consider an inductive sensor?
To learn how an inductive position sensor performs its magic, please take a look at an earlier blog:

Basic Operating Principle of an Inductive Proximity Sensor

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.