Factory of the Future

More efficient automation with explosion protection

Guest Contributor:  Frank Kaufmann, Bosch Rexroth

You think that drives for potentially explosive areas are complex to implement or technologically suboptimal? In this way you simplify your engineering and play in the first league on the automation side.

Are you automating in potentially explosive areas and tired of having to make compromises when choosing a drive solution? Regarding performance, intelligence, connection technology, …? In fact, it has not been easy to combine explosion protection, modern servo technology and efficient engineering. The common practice, including the declaration of conformity for the acceptance, is tedious and time-consuming. Especially if you have to design, have certified and apply a special enclosure for a non-ex motor. How much easier would it be if you could simply select a ready-to-install ATEX servo motor with declaration of conformity and the latest technology and immediately concentrate on the essential machine or plant construction? That’s exactly what you can do now.

First ATEX servo motor with single cable connection

Bosch Rexroth has developed the first ATEX-certified servo motor with single-cable connection in order to merge modern features such as high drive performance, simple integration into the machine, safety-on-board and i4.0 features into a complete solution. The new MS2E series is based on the MS2N standard series in terms of design and therefore achieves the same optimum values in terms of dynamics, precision and connectivity. It is also suitable for all ATEX applications up to device group II and device category 3 for gas (zone 2) and dust (zone 22). In practice, this means that an MS2E engine remains safe even if other safety-relevant or safety-specific components fail. If, for example, a combustible atmosphere is created due to a defective extraction unit, this cannot be ignited by the engine.

Fast and accurate design – with safety

Because time is money and errors cost time and money, the design within the IndraSize engineering tool is based on a virtually exact engine model. The result: the design of the MS2E corresponds exactly to the real operation. Do you want even more efficiency? With SafeMotion applications, you achieve the greatest possible machine safety thanks to high-resolution 20-bit single or multiturn encoders in SIL2 PLd. Additional practical options include holding brakes or shafts with feather keyway.

Compact power packs for downsizing

Without the right power density, an ATEX-certified engine is only half the fun. For this reason, Bosch Rexroth pays special attention to compact design. The extremely high torque density of the MS2E motors is up to 30 percent higher than that of the predecessor series – a new motor design with optimized electromagnetic design makes this possible. As a machine manufacturer, you benefit in two ways: You can solve your existing drive tasks with smaller motors and achieve more performance with the specified installation space. For the purpose of such downsizing, the self-cooled MS2E motors are available in five sizes with overlapping torque ranges up to a maximum of 119 Nm, each with up to five times the overload capacity and consistently low rotor inertia. What does this mean for your application? Full of dynamics and performance. A further plus point: because high-quality materials and optimized winding technology reduce internal losses, you can also work at higher speeds in continuous operation. As a result, you achieve significantly improved energy efficiency with sustainably reduced operating costs.

36523_Motoren_Gruppenbild-1200x429.jpg
The motor with single-cable connection reduces cabling, simplifies installation and accelerates time-to-market. (Photo: Bosch Rexroth)

Produce faster with fewer cables

You can use a real novelty in the Ex area if you use the characteristic single cable connection of the MS2E. The advantage: you need much less material as well as plug-in points and space in the cable duct. Fewer cables and interfaces also mean faster and more cost-effective assembly and installation. This reduces your costs and increases productivity – especially in applications with drag chains. Because they become lighter, you can drive at higher speeds.

Industry 4.0 without limits – the motor as sensor

If you also want to implement industrial 4.0 applications in potentially explosive areas cost-effectively and without additional components, you will be particularly pleased about this feature: As with the MS2N series, the MS2E can also be used as a sensor and data source. With a view to future requirements – keyword factory of the future – expand your intelligence in this way up to the engine. The individual measured values including saturation and temperature data are stored in the motor data memory and thus form the basis for various i4.0 applications. Because the IndraDrive controllers also access the data and process it in real time, you benefit from an additional increase in torque accuracy during operation, while the tolerance range is reduced to a fraction of the previously usual values.

Two problems with one solution

With the new ATEX motor MS2E, you have a solution: you guarantee maximum safety and play in the top league on the drive side, even in potentially explosive areas – in terms of power density, functionality and engineering. Together with the flameproof encapsulated MKE motor series, you now have a stringent overall portfolio at your disposal with which you can quickly implement your ideas – with identical performance and up to Zone 1. Interested? Learn more.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

The product carousel turns – cabinet free into the future

DC-AE-SMP5_Blog_IndraDriveMi_Teaser_gg

Guest contributor: Reinhard Mansius, Bosch Rexroth

Do you ask yourself how to produce smallest quantities in an economically viable manner? That is no problem in the factory of the future: You are able to move your machines within the factory hall or take processing stations out of a production line, reposition them and then continue production at the push of a button. Cabinet-free drive technology is a key technology here with decentralized intelligence and comprehensive communication capabilities.

Looking in any supermarket will reveal promotional packs with twenty percent extra free or special products for Easter, summer, Halloween and Christmas. The product carousel is turning at an ever increasing pace. However, the life cycles of furniture, electronic products and cars are becoming shorter and shorter as well. At the same time, online retail accounts for an increasing share of the market. Consumers like to use online configurators in order to customize their products. As a result of this, you as a manufacturer may have to make production changes several times a week instead of producing the same products over many years. In the future, even this might not be enough and refitting may be necessary on an hourly basis.

On the basis of customer applications and numerous automation projects in our own plants, we have analyzed the requirements of such varied production processes and developed a vision for the factory of the future. Only the ceiling, the walls and the floor of the factory hall will be immovable. In contrast, it will be possible to configure machines and processing stations to create new production lines which will communicate wirelessly with each other. As a result of this approach, control cabinets will be obsolete or will no longer play a central role.

Control cabinets on their way out

The aim in automation: Making production changes primarily via software, with no manual cabling work. With traditional automation concepts, all cables lead from the actuators and sensors to the control cabinet and back again. In practice, this represents a bottleneck when it comes to installation and refitting. In contrast, the IndraDrive Mi servo drives are geared to and integrated into motors. They reduce the amount of cabling work required and take up no space in the control cabinet. They are installed with all necessary supply components in a decentralized manner in the machine or processing station. Up to 30 servo drives form a drive group on a hybrid cable string for power and communication. Only the first drive has an external connection to the higher-level control systems so that changes do not require cabling work on the control cabinet.

Bild1_36475-1200x848
The IndraDrive Mi servo drives are geared to and integrated into motors.

Switch off, reposition, switch on and carry on producing

This flexibility is available for a wide power range – from 0.4 kW to 11 kW. The drives without control cabinets have as standard four digital, freely configurable I/O connections for peripherals and sensors on board. Two of these can be used as quick measuring probes. By decoupling control communication, constructors can integrate further I/O modules, sensors and actuators for pneumatics or hydraulics. This means that automation is completely decentralized. As a result, it is very easy to make changes to the factory of the future later on. Simply switch off the station, pull out one or two plugs, push the machine to its new location, switch it on and carry on producing.

Simple, reliable commissioning

You as a machine manufacturer have scarce engineering resources which need to be used efficiently. Pre-defined, pre-programmed technology functions allow many tasks such as those involving cam discs or cam gears to be performed more quickly. With the integrated Motion Logic for individual axes, the drives take on axis-related processes independently of the central control system.

Engineering tools geared to the tasks make integration into modern concepts easier and save time. The Drive System software allows quick and reliable commissioning because its reads and applies the mechanical data from the motor encoders of the Rexroth motors. At the same time, the IndraDrive Service Tool offers easy access to service and diagnostic functions and also allows the software to be parametrized and updated. The tool which is independent of operating systems runs on HTML5-capable browsers and uses the web server which is integrated into the drive. This architecture makes it easier to replace components, while the tool offers practical access management with guest and service rights.

Bild_4_29539-1200x902
Regardless of the sector – cabinet-free drive technology is revolutionizing mechanical engineering, significantly reducing costs and improving flexibility.

Communicative in a wide range of environments

Another key requirement for the factory of the future is that it can fit into connected environments and share information flexibly. You as a machine manufacturers are looking for drive solutions which allow them to cater for the different protocols in specific regions and sectors with a single item of hardware and thus simplify their entire logistics from ordering to the supply of spare parts. Cabinet-free drive technology meets this requirement with its multi-Ethernet interface. It supports all common protocols via software selection.

Ready for high-level language functions

Bosch Rexroth’s Open Core Engineering software technology allows you to access core drive functions and the integrated Motion Logic alongside PLC automation with high-level language programs.

In the future, you will be able to use Open Core Engineering for Drives to develop or purchase previously unseen web and cloud-based functions in high-level languages. This will establish a link between intelligent servo drive and server- and cloud-based applications. High-level language programming will open up entirely new connectivity options for you. Without complex PLC interfaces, you will be able to digitize the value stream – from recording an order in the ERP system and the MES systems to the drive.

Are you ready for new flexibility?

By modular concepts you will be able to streamline your processes or machines and stations and set them up flexibly and without control cabinet modifications to create new production lines geared to specific order requirements: the factory of the future is an evolutionary process which has already begun. Cabinet-free drive technology is helping you to meet the new requirements as regards flexibility economically, intelligently and safely – today.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

DIGITAL ASSISTANT REDUCES MACHINE DOWNTIMES

Guest Contributor, Stefan Saul, Bosch Rexroth

Service app makes it easier to diagnose faults and passes on expert knowledge.

Time is money! – This is particularly true when it comes to maintaining machines and systems in factory automation. Every minute that production is stopped costs money – often a lot of money. Maintenance technicians are measured by how quickly they can get a defective machine running again after a stoppage. The challenge: they usually have to deal with machines and systems of various ages and from various manufacturers. The new Digital Service Assistant (DSA) app reduces this complexity and offers quick help when servicing is required. The app allows a maintenance technician standardized, wireless access to the error memory of machines fitted with Rexroth control systems and enables them to contact local service specialists quickly. The app also helps to clearly identify spare parts and order them straight away.

 

Header

An everyday scenario for maintenance staff: a machine operator reports that a machine is not working. In practice, a maintenance worker is alerted and runs to the machine, looking for the cause of the fault on the operating display. Where was the error memory again? Then they find out that the problem is with a drive motor. Now the search begins. Where in the machine is this motor? It is then a case of unscrewing the machine cover, finding the motor and cleaning the name plate. In case of doubt, it may be necessary to remove the motor. The maintenance worker can then return to their office and, with the help of the service hotline for the machine or motor manufacturer, identify the necessary spare part with all options. In many cases, how quickly the machine can be repaired depends on the experience and inventiveness of the individual maintenance worker and how quickly they find the correct information.

Digital access to all information

This is where the Digital Service Assistant comes in. The idea: maintenance technicians using a standard mobile device have wireless access to all relevant error messages and service information for new and installed machines with Rexroth control systems, can contact local service specialists via telephone or Skype, can clearly identify components using a camera and can then order them straight away. As part of a growing digital service portfolio, the app which was developed for iOS and Android devices makes it easier to find and rectify the causes of faults and thus reduce downtimes.

If an error message is received, the maintenance technician logs on to the defective machine from any location via the production WLAN network and reads the error memory. The technician has access to the stored parameters and can see immediately where the problem lies. At the push of a button, they can download the documentation to their mobile device or send it to their e-mail account via a link. In the event of more complex problems, the maintenance technician can call the helpdesk of the control system and drive manufacturer. Geotagging is used to determine where the nearest service centers are and a suitable center can then be selected. If required, the diagnostic information and the unique device identification data can be passed on transparently to Rexroth. Thanks to this precise description of the error, help can be provided quickly because the specialists on the helpdesk can access all the necessary information straight away without having to ask questions or carry out research. On this basis, they can help end users via telephone or Skype in their national language.

Clear identification of spare parts using serial numbers

Identifying spare parts is a common problem for maintenance technicians. With special machines, tailor-made components which differ from the standard designs are often used. And when the components are produced by a number of different manufacturers, the name plate often does not provide the necessary information. To make matters worse, the software version of intelligent modules also plays a role. If the spare part has a different version, this can mean a great deal of extra work. Time-consuming research is often necessary when ordering spare parts or requesting repairs.

This is not the case with Rexroth: for each control and drive component produced, the manufacturer allocates a unique serial number for which a digital twin with all options is saved. Using the DSA, the maintenance technician either brings up the electronic name plate from the control system or scans the QR code or serial number on the component. This information is then sent to the customer portal. Here, Rexroth identifies each component with all options and software versions and the user can order the relevant spare part electronically or request a repair without further questions. This saves a significant amount of time in practice.

Installed in two steps

Users can download the app in the 1st quarter of 2019  free of charge from the relevant app stores and install it on their smart device. Many services can be used straight away even without registering. The service app is also suitable for previously installed machines with Rexroth control systems. Installation requires little work and involves two steps: the control systems must be online via WLAN so that the app can access them. In a second step, the data which may be read out are defined in the machine’s PLC: log book, error memory, operating hours counter and the serial numbers of individual components. As a result, the app is suitable for universal use.

End users always attach particular importance to data security, i.e. security during production. Protecting machines against unauthorized access and manipulation is a matter of top priority. Accordingly, the DSA establishes the connection to the control systems using the internal company WLAN in accordance with IEEE 802.11i. This network is encrypted using the WPA2 key. The app can therefore only read out data that were defined individually beforehand. As a further built-in security feature, it has no write rights for the control system.

Registration optimizes services on offer

The DSA is another building block in Rexroth’s rapidly growing range of digital services. End customers can also register their machines on the customer portal on a one-off basis. As a result of this, the machine data are stored so that service issues can be dealt with quickly and easily by the helpdesk. At the same time, end users themselves can gain an overview of all components used. They receive information regarding relevant service issues such as updates or what they can do to ensure the serviceability of their control systems and drives.

Registration helps Rexroth to optimize its service both regionally and on a customer-specific basis. On the basis of the information regarding the type and number of installed components, the company can put in place suitable service capacities and keep a stock of spare parts.

Part of the OEM service solution

The Digital Service Assistant was specially developed to allow OEMs to integrate it into their digital service concepts. As a modular building block, it fits into manufacturer-specific service tools. Here, OEMs can provide all functions and for example link their own contact data to the geotagging system. If required, Rexroth can remain in the background for the end user and will only update the data stocks and the software.

Modern digital service offerings such as the DSA open up access to all necessary information in order to diagnose and rectify faults quicker than before. They help maintenance staff to find the right solutions more quickly and reduce machine downtimes. They are a further building block for the digital transformation towards the factory of the future.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Innovative automation solutions for additive manufacturing 2.0

Guest contributor: Peter Berens, Bosch Rexroth

Additive manufacturing is a growth market – sales worth tens of billions of euros are expected by 2020. However, innovative automation solutions are needed if this disruptive technology is to achieve a breakthrough and make the leap from prototype construction and toolmaking to industrial mass production.

If machine manufacturers want to achieve the productivity needed for mass production, they need to reduce the amount of manual work involved, the reject rate and the quality assurance outlay and successfully integrate the machines into the production line. Both challenges can be met through high-performance, intelligent and connective automation.

IoT as a key technology

In the factory of the future, AM machines will be connected horizontally and vertically to higher-level and neighboring IT systems. When it comes to the industrial Internet of things, Bosch Rexroth relies on open i4.0 standards such as OPC UA. With full server/client functionality, processes, cycle times and energy consumption can be evaluated in real time and optimized to achieve better productivity and quality. In conjunction with intelligent algorithms in drive and control technology, Bosch Rexroth also carries out predictive maintenance.

3D printing and the factory of the future

Thanks to decentralized intelligence, drive technology without control cabinets and open standards, the next generation of AM machines is ready for the factory of the future. Wireless communication and modular production lines increase flexibility while reducing set-up times. As a result, the factory layout can be geared to current and future requirements. The next logical step is the decentralization of the control system which will then receive its programs as necessary from the cloud.

What the hardware must be capable of

Whether it be metal, plastic or ceramic: the output in the relevant AM procedure depends very much on the performance of the CNC or motion control system. The shorter the cycle times, the more quickly the NC programs run. The higher the performance, the quicker 3D data can be computed on the CNC and process data collected and processed in real time. The MTX CNC system from Rexroth achieves this with a combination of a high-performance dual core processor and decentralized intelligence allowing fast reaction times. As a result, many additional tasks can be performed by the machine. Planning, programming and the commissioning of all system components take place in a standardized manner via IndraWorks Engineering.

Abbildung_2_Werkstücke-768x257

Software makes all the difference

In order to be able to control the application of additive materials precisely and to influence it easily with process variables, the control software too must be particularly powerful. The MTX system software includes numerous AM-specific CNC functions for this purpose. These include an intelligent temperature control system and a 3D online simulation with collision recognition which automatically visualizes the construction time, positioning and printing head travel. The standardized G code is supported by any slicer software. Integrated NC encoding systems protect manufacturer-specific know-how.

Digitizing the workflow

Another key development area is the digitization of the workflow with typical tasks such as print configuration, job management, machine monitoring including online process modification or controlling intralogistics. Because this is not possible without interfaces to the software programs involved (e.g. CAD/CAM systems or simulation solutions), the MTX CNC system has an open system architecture and the Open Core Interface. As a result, machine operators can easily integrate their workflows. In a pre-production context, there are numerous benefits including material simulations or the certification of quality-related parameters. The CNC system thus fits seamlessly into simulation environments as “hardware in the loop”.

2Abbildung_3_CNC-System_MTX-768x513

Efficient, intelligent and connective: the MTX CNC system from Rexroth. (Source: Bosch Rexroth AG)

Industrial 3D printing in practice

Norsk Titanium AS demonstrates just how efficient industrial 3D printing can be. The world’s leading provider of additive manufacturing technologies for aerospace-grade titanium established the first additive production facility on an industrial scale. In its Rapid Plasma Deposition™ machines, an MTX system controls not only plasma burners but also ten servo axes for producing components and conveying or handling the titanium wire. The MTX system also takes care of process optimization in real time by evaluating sensors and calculating correction values. Bosch Rexroth contributed to the partnership through the experience that it gained during more than 100 group AM projects along with various system components such as drive controllers, supply units, motors and linear systems including the IMS high-precision integrated measuring system.

The German machine tool manufacturer Weisser presented its Weisser additive manufacturing exhibit for the first time at the EMO 2017 and the Metav 2018. Equipped with an additive friction welding unit (AFW), it allows fine layers of metal to be deposited on metal materials and then precision-machined using metal-cutting techniques. As a result, the final contour is maintained with minimal material use. This technology too benefits from the MTX CNC system whose user interface can be integrated seamlessly into the multi-touch operating panel thanks to the open architecture.

3Abbildung_1_PanelMaschine-768x512

The future will be even simpler

With high-performance and high-connectivity automation solutions, industrial 3D printers will be fast and reliable enough for use in mass production. Open interfaces will help to digitize workflows. IoT connectivity is paving the way for the factory of the future. At the same time, experienced system partners such as Bosch Rexroth who provide not only engineering and application support but also complementary technologies such as decentralized drive or linear technology with integrated sensor systems can help manufacturers to acquire the necessary know-how.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

With Digital Twin to the Factory of the Future – Part I

Guest contributor: Hans Michael Krause, Bosch Rexroth

Bosch Rexroth and Dassault Systèmes will use a modular assembly line to show how the Factory of the Future can be efficiently planned, implemented and continuously improved using digital twins. The key ingredients for this recipe for success: model-based systems engineering, intelligent controls and drives with open interfaces, and continuous improvement through IoT services.

Manufacturers of complex products and machines face the challenge of meeting the most diverse requirements in even shorter development cycles. With a demonstration assembly line, Dassault Systèmes and Bosch Rexroth will show at the Hannover Messe how time-to-market can be shortened with the greatest possible flexibility if production and product engineering seamlessly mesh on the data side. In addition, the turnkey assembly line highlights the added value that machine builders and end users can generate in conjunction with IoT services. The cornerstone of all this is the ‘digital twin’, a realistic depiction of product, production and performance.

 

DC-AE-SMP4_Blogbeitrag_Dassault_Grafik_Engineering_EN_201804_vl-300x193

At the Hannover Messe, Bosch Rexroth and Dassault Systèmes will demonstrate the seamless and profitable interaction of line and product engineering.

“Single source of truth” for the product, production and performance

Dassault Systèmes integrates the sample project from Bosch Rexroth into the integrated engineering workflows of the 3DEXPERIENCE platform, which provides a central source of information for designers, electricians and programmers. All platform functions for virtual engineering access a common database. For example, the simulation software receives direct access to the design data from the CAD program. In addition, it enables visualization in real time, so that visitors to the Bosch Rexroth booth can observe the 3D model of the demo line connected with the real object in real-time via sensors.

Shortened initial start-up through model-based engineering

The demo assembly line has a modular structure and is based on intelligent, decentralized automation components that are networked horizontally and vertically via open standards. The product that is assembled on the assembly line, the SCD – Sense Connect Detect sensor introduced by Bosch Rexroth, controls itself along the line using an RFID identifier. As in previous projects, such as the WestRock packaging machine, this system has also been developed, put into virtual operation and implemented in a very short time using models in the framework of Dassault Systèmes’ 3DEXPERIENCE platform. In addition to the CAD data, the behavioral models from the automation also flowed into the digital twin.

DC-AE_SMP4_Dassault_AE_Demonstrator_4-768x898The assembly line at the Hannover Messe.

Collaboration between production and product engineering

The 3DEXPERIENCE platform also acts as an interface to the end user. If the user also depicts a product using a digital twin, the system can adjust to their requirements within a short time. An example: a manufacturer of construction vehicles wants to use the SCD sensor in a future excavator to measure vibrations from the hydraulic pump. He uses the sensor model in the virtual prototype of the excavator and defines a required housing modification. Bosch Rexroth then creates a new digital twin, inserts it into the virtual line model and validates the production capability in the simulation environment. In the same way as in this example, machine builders can use their digital twins to test in advance how new variants affect space requirements, stability, geometry, storage life or transport. In addition, the simulation also exposes critical areas for product quality, thereby reducing the risk of product recalls.

Economical production of batch sizes of 1

The close interlinking of product, production and performance via digital twins also allows for much more flexibility in production. This aspect is also illustrated by the joint demo project from Bosch Rexroth and Dassault Systèmes. To economically produce different sensor variants in small quantities down to a batch size of 1, Dassault Systèmes’ 3DEXPERIENCE platform works with the system via its MES functions. It transmits the jobs individually to the assembly line via the OPC UA interface, and from there receives the production and quality data for each manufactured SCD sensor.

Dassault Systèmes’ and Bosch Rexroth’s partnership is a powerful testament to the competitive advantages that machine builders and end users derive from a seamless workflow, from virtual engineering to intelligent automation.

The digital twin is the key to the Factory of the FuturePart II  Blog Continued here:

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.