manufacturing

Improve Your Feeder Bowl System (and Other Standard Equipment) with IO-Link

Guest contributor: Tom Rosenberg, Balluff

One of the most common devices used in manufacturing is the tried and true feeder bowl system. Used for decades, feeder bowls take bulk parts, orient them correctly and then feed them to the next operation, usually a pick-and-place robot. It can be an effective device, but far too often, the feeder bowl can be a source of cycle-time slowdowns. Alerts are commonly used to signal when a feed problem is occurring but lack the exact cause of the slow down.

feeder bowl

A feed system’s feed rate can be reduced my many factors. Some of these include:

  • Operators slow to add parts to the bowl or hopper
  • Hopper slow to feed the bowl
  • Speeds set incorrectly on hopper, bowl or feed track
  • Part tolerance drift or feeder tooling out of adjustment

With today’s Smart IO-Link sensors incorporating counting and timing functions, most of the slow-down factors can be easily seen through an IIoT connection. Sensors can now time how long critical functions take. As the times drift from ideal, this information can be collected and communicated upstream.

A common example of a feed system slow-down is a slow hopper feed to the bowl. When using Smart IO-Link sensors, operators can see specifically that the hopper feed time is too long. The sensor indicates a problem with the hopper but not the bowl or feed tracks. Without IO-Link, operators would simply be told the overall feed system is slow and not see the real problem. This example is also true for the hopper in-feed (potential operator problem), feed track speed and overall performance. All critical operations are now visible and known to all.

For examples of Balluff’s smart IO-Link sensors, check out our ADCAP sensor.

 

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

RFID in the Manufacturing Process: A Must-Have for Continuous Improvement

Guest Contributor:  Wolfgang Kratenzenberg, Balluff

There is quite an abundance of continuous improvement methodologies implemented in manufacturing processes around the globe. Whether it’s Lean, Six Sigma, Kaizen, etc., there is one thing that all of these methodologies have in common, they all require actionable data in order to make an improvement.  So, the question becomes: How do I get my hands on actionable data?

All data begins its life as raw data, which has to be manipulated to produce actionable data. Fortunately, there are devices that help automate this process. Automatic data collection (ADC), which includes barcode and RFID technology, provides visibility into the process. RFID has evolved to become the more advanced method of data collection because it doesn’t require a centralized database to store the data like barcode technology. RFID stores the data directly on the product or pallet in the process, which allows for much more in-depth data collection.

rfid

RFID’s greatest impact on the process tends to be improving overall quality and efficiency. For example, Company X is creating widgets and there are thirty-five work cells required to make a widget. Between every work cell there is a quality check with a vision system that looks for imperfections created in the prior station. When a quality issue is identified, it is automatically written to the tag.  In the following work cell the RFID tag is read as soon as it enters the station. This is where the raw data becomes actionable data. As soon as a quality issue has been identified, someone or something will need to take action. At this point the data becomes actionable because it has a detailed story to tell. While the error code written to the tag might just be a “10”, the real story is: Between cells five and six the system found a widget was non-conforming. The action that can be taken now is much more focused. The process at cell five can be studied and fixed immediately, opposed to waiting until an entire batch of widgets are manufactured with a quality issue.

Ultimately, flawless execution is what brings success to organizations.  However, in order to execute with efficiency and precision the company must first have access to not only data, but actionable data. Actionable data is derived from the raw data that RFID systems automatically collect.

Learn more about RFID technology at www.balluff.com.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.