sensor

Capacitive, the Other Proximity Sensor

Guest Contributor: Jack Moermond, Balluff

What is the first thing that comes to mind if someone says “proximity sensor?” My guess is the inductive sensor, and justly so because it is the most used sensor in automation today. There are other technologies that use the term proximity in describing the sensing mode, including diffuse or proximity photoelectric sensors that use the reflectivity of the object to change states and proximity mode of ultrasonic sensors that use high-frequency sound waves to detect objects. All these sensors detect objects that are in close proximity to the sensor without making physical contact. One of the most overlooked or forgotten proximity sensors on the market today is the capacitive sensor.

Capacitive sensors are suitable for solving numerous applications. These sensors can be used to detect objects, such as glass, wood, paper, plastic, or ceramic, regardless of material color, texture, or finish. The list goes on and on. Since capacitive sensors can detect virtually anything, they can detect levels of liquids including water, oil, glue, and so forth, and they can detect levels of solids like plastic granules, soap powder, sand, and just about anything else. Levels can be detected either directly, when the sensor touches the medium, or indirectly when it senses the medium through a non-metallic container wall.

Capacitive sensors overview

Like any other sensor, there are certain considerations to account for when applying capacitive, multipurpose sensors, including:

1 – Target

  • Capacitive sensors can detect virtually any material.
  • The target material’s dielectric constant determines the reduction factor of the sensor. Metal / Water > Wood > Plastic > Paper.
  • The target size must be equal to or larger than the sensor face.

2 – Sensing distance

  • The rated sensing distance, or what you see in a catalog, is based on a mild steel target that is the same size as the sensor face.
  • The effective sensing distance considers mounting, supply voltage, and temperature. It is adjusted by the integral potentiometer or other means.
  • Additional influences that affect the sensing distance are the sensor housing shape, sensor face size, and the mounting style of the sensor (flush, non-flush).

3 – Environment

  • Temperatures from 160 to 180°F require special considerations. The high-temperature version sensors should be used in applications above this value.
  • Wet or very humid applications can cause false positives if the dielectric strength of the target is low.
  • In most instances, dust or material buildup can be tuned out if the target dielectric is higher than the dust contamination.

4 – Mounting

  • Installing capacitive sensors is very similar to installing inductive sensors. Flush sensors can be installed flush to the surrounding material. The distance between the sensors is two times the diameter of the sensing distance.
  • Non-flush sensors must have a free area around the sensor at least one diameter of the sensor or the sensing distance.

5 – Connector

  • Quick disconnect – M8 or M12.
  • Potted cable.

6 – Sensor

  • The sensor sensing area or face must be smaller or equal to the target material.
  • Maximum sensing distance is measured on metal – reduction factor will influence all sensing distances.
  • Use flush versions to reduce the effects of the surrounding material. Some plastic sensors will have a reduced sensing range when embedded in metal. Use a flush stainless-steel body to get the full sensing range.

These are just a few things to keep in mind when applying capacitive sensors. There is not “a” capacitive sensor application – but there are many which can be solved cost-effectively and reliably with these sensors.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Improving sawmill yield through automation

Guest contributor: Christian Holder, Balluff

It is not a surprise that optimizing yield is one of the most important objectives in a sawmill (or lumber mill) as it is in any other industry. The big difference is that there is hardly any control over the quality of the logs that enter the sawill. In the ideal world all logs are not only cylindrical in shape but also straight. But obviously each individual log is unique in shape. Crooked, out-of-round, or tapered logs are common and even worse: usually it is a combination of these shapes.

Still the target is to recover as much yield from each log as possible. Therefore sawmills turn into highly automated factories with three dimensional (3D) measurement of logs, and advanced equipment for primary and secondary breakdown. Basically there are three areas of automation in a sawmill:

  1. 3D measurement for optimum cutting pattern to recover most yield from a log
  2. Automation of drives to position the log itself, or tools (e.g. sawblades, knifes, canter heads…) at high velocity to increase throughput
  3. Automation of log and lumber handling to minimize the gap between the logs

All of the three areas support the sawmill’s target to get the most out of the logs at the highest speed. The worst case is any downtime as it directly impacts the whole log to lumber process. Therefore electrical engineers look for sensors that meet the challenges of the sawmill environment. Mainly sensors must meet high vibration and shock standards. As they are exposed to the environment, protective housings help to protect the sensors from logs crashing into them.

From logs to lumber

Wave feeder with analog distance sensor

To efficiently process logs to lumber, sawmills use dedicated equipment for different sizes of logs. As a result bigger mills have a primary and a secondary breakdown area. Independent from the logs, sawmills aim to minimize the gaps and to avoid changes in the setup. This allows them to run faster and to increase the production rate. Here is the process how a log turns into lumber in a sawmill.

When a log arrives at the mill it is indexed onto the infeed conveyer (could be a step feeder or log loader). Either inductive sensors sequence the steps. Or a magnetostrictive position sensor (linear transducer) provides feedback of the step position of the loader to control motion and speed. Once the log is on the loader analog distance sensors determine the distance to the end of the log from the side of the loader wall.

This is to ensure a constant distance between the logs (log gap) as they enter the sawmill. Knowing the distance enables them to control when the log is loaded on the conveyor. And thereby they can control the gap. As an alternative photoelectric a thru beam sensor determines if a log is present for the final two steps on a loader. These sensors work with a long measuring range. Additionally they have a large functional reserve and are very resistant to dirt and dust.

Primary breakdown – from raw log to slabs and cants

The first step of the log is to run through a debarker that removes the bark. As there are tolerances in shape, linear transducers and photoelectric analog distance sensors are used to determine log sizes. These sizes help to adjust the debarker’s pressure and speed. After debarking the logs are cut to the best pre-determined length by cut-off or bucking saws. Again linear transducers are used to control the motion of the cut-off saw swing.

By stacking some photoelectric through beam sensors they can be used to determine the log diameter roughly. This leads to increasing speed as the saw can cut through smaller logs faster and has to slow down for larger logs. Many mills just sort their debarked logs into “large logs” and “small logs” based on their diameters.  And then go into machines that are set up for those particular log sizes.

Log carriage for 20″ (50cm) logs and more

Carriage saw using BTL for clamping and positioning
Carriage saw with BTL for positioning

Many mills also run a lot of larger logs and therefore have a log carriage. This is a single band saw with a carriage that runs on railway style tracks. The carriage has three or four knees that have positioners and log clamps (dogs) that hold the log. In the knees hydraulic cylinders with magnetostrictive transducers position the log. Even under extreme surrounding conditions, these position sensors guarantee a high machine and system availability. The clamps hold the log while it movesthrough the band saw. The carriage cuts the logs into slabs (two flat, two rounded sides) or into cants (four flat, square sides).

Secondary Breakdown – from small logs, slabs and cants to lumber

Mills that run smaller logs do not have to break down the logs prior to putting them through the secondary breakdown equipment. After the cut-off saw, the small logs will be sorted by size into bins. Step feeders index them again onto a conveyor and that feeds them through a Scanner into the small log line machine. To recover as much yield as possible log turners turn the logs in the optimum position. Chipper canters center them to enable curve sawing, which leads to increased lumber recovery.

Hydraulic drives dominate small log lines and all motion control happens with linear position transducers. Typical small log lines consist of log turning and centering, chipping with canter heads, saw box slew and skew, saw box positioniers, profiling heads and outfeed pickers. All of the equipments’ design aims for speed and therefore they require fast and accurate position feedback. Sensors and transducers must withstand high shock and vibration. Balluff’s products survive even in toughtest environments and undergo intensive shock and vibration testing.

Shifting edgers and curve sawing

Edgers using BTL for curve sawing
Sawblade Adjustment with BTL

Gang edgers and shifting edgers cut cants and slabs from the primary breakdown into boards. Gang edgers have circular saws stacked at fixed spacing. Shifting edgers look similar to gang edgers except that they change spacing  between saw blades can be changed. Therefore each saw is connected to a hydraulic positioner. A scanner looks at the cant or slab and determines the best solutions of cuts to produce best results. After the scanner the positioners of the shifting edgers set the new saw spacing to match that solution.

Edger optimizers pre-position the board and optimize the infeed to get the best payback from the machine. Photoelectric (laser) retroreflective sensors  track boards through the ducker table. The infeed position cylinder (with integrated linear transducer) skews the board in the best position to be fed in the edger.

Trimming, sorting, stacking, strapping, shipping

Photoelectric sensors detect boards at the trimmer infeed

The boards go into bins when they come out of the edgers. Another scanner determines if the board can be cut down into shorter boards. Or if a damaged end needs to be cut off so that the board is not graded lower. The next step is processing the board through a trimmer. The trimmer is a set of up to about a dozen circular saws positioned across the conveyor. It can cut longer boards down into two or three shorter boards or just trim the ends.

Photoelectric analog distance sensors detect stacked boards from high distance

Background suppression photoelectric sensors at the indeed of the trimmer look down at the board as it goes into the machine. And they determine if the board is actually as long as the scanner information indicates. The same sensors confirm after the trimmer that the board was cut down to the proper size. After the trimmer they go into a sorter and and from there to stacking and strapping to final shipment.

We provide additional information how our sensors help to automate sawmills on our website.

Veneer instead of solid wood

A sawmill produces solid wood. This means that the board is out of one piece of wood. Another type of boards is veneer. This means that thin layers of wood are glued together to reach a board. Usually these layers are less that 3 mm thick. A lathe continuously turns a log against a blade to peel it. With each rotation the log becomes thinner. Therefore the blade position needs to be adjusted. Hydraulic cylinders with integrated linear transducers centerthe log and position the blade to peel the trunk. The thin layers are glued together in a veneer press.

Not only stationary, but also portable sawmills

In the end our sensors and transducers not only help to automate huge mills, but also portable sawmills. Magnetostrictive or magnetically sensors enable operators to exactly position the saw unit. So they achieve accurate and fast cutting of boards. Wood-Mizer is a world leading supplier of efficient and fast portable sawmills that uses magnetostrive position sensors in it’s machines. The reasons for Balluff are its product and service quality as well as the availability.

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

IO-Link Measurement Sensors Solve Application Challenges

In industrial distance and position measurement applications, one size definitely does not fit all.  Depending on the application, the position or distance to be measured can range from just a few millimeters up to dozens of meters.  No single industrial sensor technology is capable of meeting these diverse requirements.

Fortunately, machine builders, OEM’s and end-users can now choose from a wide variety of IO-Link distance and position measurement sensors to suit nearly any requirement.  In this article, we’ll do a quick rundown of some of the more popular IO-Link measurement sensor types.

(For more information about the advantages of IO-Link versus traditional analog measurement sensors, see the following blog posts, Solving Analog Integration Conundrum, Simplify Your Existing Analog Sensor Connection, and How Do I Make My Analog Sensor Less Complex?)

Short Range Inductive Distance Sensors

These sensors, available in tubular and blockScott Image1.JPG style form factors are used to measure very short distances, typically in the 1…5 mm range.  The operating principle is similar to a standard on/off inductive proximity sensor.  However, instead of discrete on/off operation, the distance from the face of the sensor to a steel target is expressed as a continuously variable value.  Their extremely small size makes them ideal for applications in confined spaces.

Inductive Linear Position Sensors

Inductive linear position sensors are available in several block style form factors, and are used for position measurement over stroke lengths up to about 135 mm.  These types of sensors use an array of inductive coils to accurately measure the position of a metal target.  Compact form factors and low stroke-to-overall length factor make them well suited for application with limited space.

BIP(1)_46630_Produktnews_korrBIP(2)_55370_00_P_00_00_00

Magnetostrictive Linear Position Sensors

IO-Link Magnetostrictive linear position sensors are available in rod style form factors for hydraulic cylinder position feedback, and in external mount profile form factors for general factory automation position monitoring applications.  These sensors use time-proven, non-contact magnetostrictive technology to provide accurate, absolute position feedback over stroke lengths up to 4.8 meters.

Laser Optical Distance Sensors

 

Scott Image 4.JPGLaser distance sensors use either a time-of-flight measuring principle (for long range) or triangulation measuring principle (for shorter range) to precisely measure sensor to target distance from up to 6 meters away.  Laser distance sensors are especially useful in applications where the sensor must be located away from the target to be measured.

 

Magnetic Linear Encoders

IO-Link magnetic linear encoders use an absolute-codedScott Image 5flexible magnet tape and a compact sensing head to provide extremely accurate position, absolute position feedback over stroke lengths up to 8 meters.  Flexible installation, compact overall size, and extremely fast response time make magnetic linear encoders an excellent choice for demanding, fast moving applications.

IO-Link Measurement Sensor Trends

The proliferation of available IO-Link measurement sensors is made possible, in large part, due to the implementation of IO-Link specification 1.1, which allows faster data transmission and parameter server functionality.  The higher data transfer speed is especially important for measurement sensors because continuous distance or position values require much more data compared to discrete on/off data.  The server parameter function allows device settings to be stored in the sensor and backed up in the IO-Link master.  That means that a sensor can be replaced, and all relevant settings can be downloaded from master to sensor automatically.

To learn about IO-Link in general and IO-Link measurement sensors in particular, visit www.balluff.com.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Is IO-Link only for Simplifying Sensor Integration?

Guest contributor: Shishir Rege, Balluff

On several occasions, I was asked what other applications IO-Link is suitable for? Is it only for sensor integration? Well the answer is no! There are several uses for IO-Link and we are just beginning to scratch the surface for what IO-Link can do. In this blog post I will cover at least 7 common uses for IO-Link including sensor integration.
IO-Link in essence provides tremendous flexibility. Each available IO-Link port offers the possibility to connect devices from hundreds of manufacturers to build a resilient distributed modular controls architecture — that is essentially independent of the fieldbus or network. IO-Link is the first standardized sensor/actuator communication protocol as defined in IEC61131-9.

USE-CASE #1: Simplify sensor integration
Multitudes of IO-Link sensors from 100+ manufacturers can be connected using the simple 3-wire M12 prox cables. No shielded cables are required. Additionally, using IO-Link provides a parameterization feature and anti-tampering abilities- on the same 3 wires. The sensor can be configured remotely through a PLC or the controller and all the configuration settings can be stored for re-application when the sensor is replaced. This way, on your dreaded night shift changing complex sensor is just plug-n-play. Recipe changes on the line are a breeze too. For example, if you have an IO-Link color sensor configured to detect a green color and for the next batch you want to start detecting red color- with IO-Link it is simply a matter of sending a parameter for the color sensor – instead of sending a maintenance person to change the settings on the sensor itself — saving valuable time on the line.
color sensors

USE-CASE #2: Simplify analog sensor connections
In one of my previous blogs, “Simplify your existing analog sensor connection”, I detailed how connecting an analog sensor with single or multi-channel analog-to-IO-Link (A/D) converters can eliminate expensive shielded cables and expensive analog cards in the controller rack and avoids all the hassle that comes with the analog sensors.

USE-CASE #3: Simplify RFID communication
IO-Link makes applications with RFID particularly intriguing because it takes all the complexity of the RFID systems out for simple applications such as access control, error-proofing, number plate tracking and so on. In an open port on IO-Link master device you can add read/write or read only RFID heads and start programming. A couple of things to note here is this IO-Link based RFID is geared for small data communication where the data is about 100-200 bytes. Of-course if you are getting into high volume data applications a dedicated RFID is preferred. The applications mentioned above are not data intensive and IO-Link RFID is a perfect solution for it.

USE-CASE #4: Simplify Valve Integration
valve manifoldTypically valve banks from major manufacturers come with a D-sub connection with 25 pins. These 25 wires are now required to be routed back to the controls cabinet, cut, stripped, labeled, crimped and then terminated. The other expensive option is to use a network node on the valve bank itself, which requires routing expensive network cable and power cable to the valve bank. Not to mention the added cost for the network node on the valve bank. Several manufacturers now offer IO-Link on the valve manifold itself simplifying connection to 4-wires and utilizing inexpensive M12 prox cables. If you still have the old D-sub connector, an IO-Link to 25-pin D-sub connectors may be a better solution to simplify the valve bank installation. This way, you can easily retrofit your valve bank to get the enhanced diagnostics with IO-Link without much cost. Using IO-Link valve connectors not only saves time on integration by avoiding the labor associated with wire routing, but it also offers a cost effective solution compared to a network node on the valve manifold. Now you can get multiple valve manifolds on the single network node (used by the IO-Link master) rather than providing a single node for each valve manifold in use.

USE-CASE #5 Simplify Process Visualization
Who would have thought IO-Link can add intelligence to a stack light or status indicator? Well, we did. Balluff introduced an IO-Link based fully programmable LED tower light system to disrupt the status indicator market. The LED tower light, or SmartLight, uses a 3-wire M12 prox cable and offers different modes of operations such as standard stack light mode with up to 5 segments of various color lights to show the status of the system, or as a run-light mode to display particular information about your process such as system is running but soon needs a mechanical or electrical maintenance and this is done by simply changing colors of a running segment or the background segment. Another mode of operation could be a level mode where you can show the progress of process or show the fork-lift operators that the station is running low on parts. Since the Smartlight uses LEDs to show the information, the colors, and the intensity of the light can be programmed. If that is not enough you can also add a buzzer that offers programmable chopped, beep or continuous sound. The Smartlight takes all of the complexity of the stack light and adds more features and functions to upgrade your plant floor.

USE-CASE #6: Non-contact connection of power and data exchange
Several times on assembly lines, a question is how to provide power to the moving pallets to energize the sensors and I/O required for the operation? When multi-pin connectors are used the biggest problem is that the pins break by constantly connecting or disconnecting. Utilizing an inductive coupling device that can enable transfer of power and IO-Link data across an air-gap simplifies the installation and eliminates the unplanned down-time. With IO-Link inductive couplers, up to 32 bytes of data and power can be transferred. Yes you can activate valves over the inductive couplers!  More on inductive coupling can be found on my other series of blogs “Simple Concepts for Complex Automation”

USE-CASE #7: Build flexible high density I/O architectures.
IO PointsHow many I/O points are you hosting today on a single network drop? The typical answer is 16 I/O points. What happens when you need one additional I/O point or the end-user demands 20% additional I/O points on the machine? Until now, you were adding more network or fieldbus nodes and maintaining them. With I/O hubs powered by IO-link on that same M12 4-wire cable, now each network node can host up to 480 I/O points if you use 16 port IO-Link masters. Typically most of our customers use 8-port IO-Link masters and they have the capacity to build up to 240 configurable I/O on a single network drop. Each port on the I/O hub hosts two channels of I/O points with each channel configurable as input or output, as normally open or normally closed. Additionally, you can get diagnostics down to each port about over-current or short-circuit. And the good thing is, each I/O hub can be about 20m away.

In a nutshell, IO-Link can be used for more than just simplifying sensor integration and can help significantly reduce your costs for building flexible resilient controls architectures. Still don’t believe it? Contact us and we can work through your particular architecture to see if IO-Link offers a viable option for you on your next project.

cropped-cmafh-logo-with-tagline-caps1.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

How do I make my analog sensor less complex?

Guest contributor: Shishir Rege, Balluff

So, you have a (or many) analog sensor in your application or system and they could be 4-20mA signal or 0-10V or even -10- +10V signal strength. You probably know that installing these specialty sensors takes some effort. You need shielded cables for signal transmission, the sensor probably has some digital interface for set-point settings or configuration. In all, there are probably 6-8 at minimum terminations for this single sensor. Furthermore, these expensive cables need to be routed properly to ensure minimal electromagnetic interference (EMI) on the wire. To make matter more complex, when its time to diagnose problem with the sensor, it is always on the back of your mind that may be the cable is catching some interference and giving improper readings or errors.

shieldedCablesOn the other hand, the cost side also is little tricky. You have the state of the art sensor that requires expensive shielded cable and the expensive analog input card (which generally has 4 channels- even if you use single channel), plus some digital I/O to get this single sensor to communicate to your PLC/PAC or controller. You are absolutely right, that is why people are demanding to have this sensor directly on their network so that it eliminates all the expensive cables and cards and talks directly to the controller on express way– so to speak.

Recently, there has been an explosion of industrial communication networks and fieldbuses. To name a few: EtherNet/IP, DeviceNet, PROFINET, PROFIBUS, CC-Link, CC-Link IE, Powerlink, Sercos, and the list goes on. As a machine builder, you want to be open to any network of customer’s choice. So, if that is the case, having network node on the sensor itself would make that sensor more bulky and expensive than before — but not only that, now the manufacturers have to develop sensor connectivity to ALL the networks and maintain separate inventory of each type. As a machine builder, it does put lot more stress on you as well to maintain different Bills of Materials (BOMs) for different projects – most likely – different sourcing channels and so on.

NetworksSo far what we discussed are two extremes; the way of the past with shielded cables and analog cards, and a wishful future where all devices are on the network. There is a middle ground that bridges yesterday’s method and the wishful future without adding any burden on manufacturers of the sensors or even the machine builders. The solution is IO-Link. IO-Link is the first standard (IEC 61131-9) sensor actuator communication technology. There are over 100+ members in the consortium that produce wide variety of sensors that can communicate over IO-Link.

If a sensor has IO-Link communication, denoted by  io-linklogo, then you can connect a standard M12 prox cable — let me stress– UNSHIELDED, to connect the sensor to the IO-Link port on the IO-Link master device. That’s it! No need to terminate connections, or buy expensive hardware. The IO-Link master device typically has 4, 8 or 16 ports to connect various IO-Link devices including I/O hubs, RFID, Valve connectors and more. (see picture below)

DistModIO

All signal communication and configuration now occurs on standard 3 conductor cable that you are currently using for your discrete sensors. The IO-Link master in turn acts as a gateway to the network. So, the IO-Link master sits on the network or fieldbus and collects all the sensors or discrete I/O information from devices and sends it to the controller or the PLC of the customer choice.

When your customer demands a different network or the fieldbus, the only thing that changes in your question is the master that talks to a different protocol.

In my next blog we will discuss how you can eliminate shielded cables and expensive analog cards for your existing analog sensor. Let me give you a hint– again the solution is with IO-Link.

cropped-cmafh-logo-with-tagline-caps1.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

IO-Link Hydraulic Cylinder Position Feedback

Guest contributor: Scott Rosenberger, Balluff

Ready for a better mousetrap?  Read on…..btl_io-link

Some time ago on Sensortech, we discussed considerations for choosing the right in-cylinder position feedback sensor.  In that article, we said:

“…….Analog 0-10 Vdc or 4-20 mA interfaces probably make up 70-80% of all in-cylinder feedback in use…..”

And while that 70-80% analog figure is still not too far off, we’re starting to see those numbers decline, in favor a of newer, more capable interface for linear position feedback:  IO-Link.  Much has been written, here on Sensortech and elsewhere, about the advantages offered by IO-Link.  But until now, those advantages couldn’t necessarily be realized in the world of hydraulic cylinder position feedback.  That has all changed with the availability of in-cylinder, rod-style magnetostrictive linear position sensors.  Compared to more traditional analog interfaces, IO-Link offers some significant, tangible advantages for absolute position feedback in hydraulic cylinders.

Connectivity

First and foremost, the story of IO-Link is that it offers easy, simple connection of sensors and IO to nearly any industrial network.  You can read more about that here.

Simplicity

Another big advantage of IO-Link is the ability to connect sensors to the network using standard, simple, unshielded M12 connectors and cables.  Compared to analog systems, which require shielded cabling, and sometimes unusual or proprietary connectors, connecting IO-Link sensors to the network is simpler, and usually less costly.

Visibility

Unlike their traditional analog counterparts, position sensors with IO-Link offer built-in diagnostic capabilities.  Sensor status can be monitored over the network, greatly simplifying troubleshooting and fault detection.

Flexibility

This is where IO-Link position sensors really start to shine.  Traditional analog position sensors provide one thing: position feedback in the form of an analog signal (obviously).  IO-Link position sensors provide position feedback, of course…but wait, there’s more.  In addition to position feedback, IO-Link sensors can provide velocity/speed information, temperature, and differential position (the difference between two position magnets).  And the best part?  All of this functionality can be freely configured over the network.  Plus, sensor configurations can be stored and subsequently downloaded to a replacement sensor if necessary.

Suitability

It’s worthwhile to point out that IO-Link linear position sensors are ideal for most positioning or position monitoring applications.  Just as with analog sensors though, they’re probably not suitable for high-performance closed-loop servohydraulic motion control applications.  In those applications, interfaces that are capable of providing super-fast, deterministic data, such Synchronous Serial Interface (SSI) or even Ethernet/IP are more suitable.

You can learn more in this overview flyer.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Basic Color Sensor Overview

Guest contributor:  Jack Moermond, Balluff

In the past, color sensors emitted light using red, green and blue LEDs. The sensors were then able to distinguish colors using the RGB components of the reflected light back to the sensor’s receiver. As technology has progressed true color sensors have been developed that not only can compare colors but measure them more accurately than the human eye.

Color sensors are based on diffuse technology and can be compared to a fixed focus or convergent sensor because of the focused light spot. Unlike color contrast sensors that only detect the difference between two colors based on brightness, color sensors can detect a wide range of colors.

cielabTrue color sensors typically use white LEDs which allow for a greater color spectrum evaluation. Combine this with the CIELAB color system which is one of the most versatile color systems and the result is a color sensor that equals or exceeds the human eye. The CIELAB color system is a three-dimensional independent infinite representation of colors. The L component for lightness and a and b components for color are predefined absolute values. Lightness varies from black (0) to the brightest white (100). Color channel a varies from green negative 100 to red positive 100. Color channel b varies from blue negative 100 to yellow positive 100 with gray values at a=0 and b=0.

Due to the technology, color sensors can check only a small spot of color but can check this spot amazingly fast – up to 1.5 kHz in case of the Balluff’s fiber optic BFS 33M which also has a range of 400mm. Unlike a color sensor camera, which will focus on the object’s surface pattern and may cause false readings the true color sensor will ignore patterns thus providing more accurate color detection. In addition the true color sensor will have more outputs than the color camera.

Smart color cameras are working with RGB but could work also with HSV color models. They could be used to check larger areas for the same color or color codes on a part, but have slower update rate of 50 Hz. Special cameras for faster applications are available in the market but at higher costs. It is important that the light source for the smart color cameras be a white light with a standardized white balance, and that this light must kept constant for all checks to avoid errors.

The sophistication on the front end of the color sensor can be much more advanced and still remain a cost effective option for industrial use due to the fact that a camera requires a much larger processing system. The more sophisticated the sensors are in the camera the more robust the processor must be in order to process or map the data into an image.

To learn more:  Request a digital copy of Balluff’s Photoelectric Handbook here.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.